Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning

Claude Formanek, Louise Beyers, Callum Rhys Tilbury, Jonathan P. Shock, Arnu Pretorius
{"title":"Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning","authors":"Claude Formanek, Louise Beyers, Callum Rhys Tilbury, Jonathan P. Shock, Arnu Pretorius","doi":"arxiv-2409.12001","DOIUrl":null,"url":null,"abstract":"Offline multi-agent reinforcement learning (MARL) is an exciting direction of\nresearch that uses static datasets to find optimal control policies for\nmulti-agent systems. Though the field is by definition data-driven, efforts\nhave thus far neglected data in their drive to achieve state-of-the-art\nresults. We first substantiate this claim by surveying the literature, showing\nhow the majority of works generate their own datasets without consistent\nmethodology and provide sparse information about the characteristics of these\ndatasets. We then show why neglecting the nature of the data is problematic,\nthrough salient examples of how tightly algorithmic performance is coupled to\nthe dataset used, necessitating a common foundation for experiments in the\nfield. In response, we take a big step towards improving data usage and data\nawareness in offline MARL, with three key contributions: (1) a clear guideline\nfor generating novel datasets; (2) a standardisation of over 80 existing\ndatasets, hosted in a publicly available repository, using a consistent storage\nformat and easy-to-use API; and (3) a suite of analysis tools that allow us to\nunderstand these datasets better, aiding further development.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Offline multi-agent reinforcement learning (MARL) is an exciting direction of research that uses static datasets to find optimal control policies for multi-agent systems. Though the field is by definition data-driven, efforts have thus far neglected data in their drive to achieve state-of-the-art results. We first substantiate this claim by surveying the literature, showing how the majority of works generate their own datasets without consistent methodology and provide sparse information about the characteristics of these datasets. We then show why neglecting the nature of the data is problematic, through salient examples of how tightly algorithmic performance is coupled to the dataset used, necessitating a common foundation for experiments in the field. In response, we take a big step towards improving data usage and data awareness in offline MARL, with three key contributions: (1) a clear guideline for generating novel datasets; (2) a standardisation of over 80 existing datasets, hosted in a publicly available repository, using a consistent storage format and easy-to-use API; and (3) a suite of analysis tools that allow us to understand these datasets better, aiding further development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将数据置于离线多代理强化学习的中心位置
离线多代理强化学习(MARL)是一个令人兴奋的研究方向,它利用静态数据集来寻找多代理系统的最优控制策略。虽然从定义上讲,该领域是数据驱动的,但迄今为止,人们在努力取得最先进结果的过程中忽略了数据。我们首先通过对文献的调查证实了这一说法,并展示了大多数作品是如何在没有一致方法的情况下生成自己的数据集,并提供了有关数据集特征的稀缺信息。然后,我们通过一些突出的例子,说明算法性能与所使用的数据集是如何紧密联系在一起的,这就需要为该领域的实验提供一个共同的基础,从而说明为什么忽视数据的性质是有问题的。作为回应,我们在改进离线 MARL 中的数据使用和数据感知方面迈出了一大步,主要贡献有三:(1)为生成新数据集提供了明确的指导;(2)对现有的 80 多个数据集进行了标准化,这些数据集托管在一个公开可用的存储库中,使用一致的存储格式和易于使用的 API;(3)提供了一套分析工具,使我们能够更好地理解这些数据集,从而有助于进一步的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1