EmBARDiment: an Embodied AI Agent for Productivity in XR

Riccardo Bovo, Steven Abreu, Karan Ahuja, Eric J Gonzalez, Li-Te Cheng, Mar Gonzalez-Franco
{"title":"EmBARDiment: an Embodied AI Agent for Productivity in XR","authors":"Riccardo Bovo, Steven Abreu, Karan Ahuja, Eric J Gonzalez, Li-Te Cheng, Mar Gonzalez-Franco","doi":"arxiv-2408.08158","DOIUrl":null,"url":null,"abstract":"XR devices running chat-bots powered by Large Language Models (LLMs) have\ntremendous potential as always-on agents that can enable much better\nproductivity scenarios. However, screen based chat-bots do not take advantage\nof the the full-suite of natural inputs available in XR, including inward\nfacing sensor data, instead they over-rely on explicit voice or text prompts,\nsometimes paired with multi-modal data dropped as part of the query. We propose\na solution that leverages an attention framework that derives context\nimplicitly from user actions, eye-gaze, and contextual memory within the XR\nenvironment. This minimizes the need for engineered explicit prompts, fostering\ngrounded and intuitive interactions that glean user insights for the chat-bot.\nOur user studies demonstrate the imminent feasibility and transformative\npotential of our approach to streamline user interaction in XR with chat-bots,\nwhile offering insights for the design of future XR-embodied LLM agents.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

XR devices running chat-bots powered by Large Language Models (LLMs) have tremendous potential as always-on agents that can enable much better productivity scenarios. However, screen based chat-bots do not take advantage of the the full-suite of natural inputs available in XR, including inward facing sensor data, instead they over-rely on explicit voice or text prompts, sometimes paired with multi-modal data dropped as part of the query. We propose a solution that leverages an attention framework that derives context implicitly from user actions, eye-gaze, and contextual memory within the XR environment. This minimizes the need for engineered explicit prompts, fostering grounded and intuitive interactions that glean user insights for the chat-bot. Our user studies demonstrate the imminent feasibility and transformative potential of our approach to streamline user interaction in XR with chat-bots, while offering insights for the design of future XR-embodied LLM agents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EmBARDiment:用于提高 XR 生产率的嵌入式人工智能代理
运行由大型语言模型(LLM)驱动的聊天机器人的 XR 设备作为始终在线的代理具有巨大的潜力,可以大大提高工作效率。然而,基于屏幕的聊天机器人并没有利用 XR 中可用的全套自然输入,包括面向内部的传感器数据,而是过度依赖明确的语音或文本提示,有时还搭配作为查询一部分的多模态数据。我们提出的解决方案利用了一种注意力框架,该框架可以从 XR 环境中的用户行为、眼球注视和上下文记忆中获取上下文。我们的用户研究证明了我们的方法在 XR 中简化用户与聊天机器人交互的迫切可行性和变革潜力,同时也为未来 XR 嵌入式 LLM 代理的设计提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1