A Quality Diversity Approach to Automatically Generate Multi-Agent Path Finding Benchmark Maps

Cheng Qian, Yulun Zhang, Varun Bhatt, Matthew Christopher Fontaine, Stefanos Nikolaidis, Jiaoyang Li
{"title":"A Quality Diversity Approach to Automatically Generate Multi-Agent Path Finding Benchmark Maps","authors":"Cheng Qian, Yulun Zhang, Varun Bhatt, Matthew Christopher Fontaine, Stefanos Nikolaidis, Jiaoyang Li","doi":"arxiv-2409.06888","DOIUrl":null,"url":null,"abstract":"We use the Quality Diversity (QD) algorithm with Neural Cellular Automata\n(NCA) to generate benchmark maps for Multi-Agent Path Finding (MAPF)\nalgorithms. Previously, MAPF algorithms are tested using fixed, human-designed\nbenchmark maps. However, such fixed benchmark maps have several problems.\nFirst, these maps may not cover all the potential failure scenarios for the\nalgorithms. Second, when comparing different algorithms, fixed benchmark maps\nmay introduce bias leading to unfair comparisons between algorithms. In this\nwork, we take advantage of the QD algorithm and NCA with different objectives\nand diversity measures to generate maps with patterns to comprehensively\nunderstand the performance of MAPF algorithms and be able to make fair\ncomparisons between two MAPF algorithms to provide further information on the\nselection between two algorithms. Empirically, we employ this technique to\ngenerate diverse benchmark maps to evaluate and compare the behavior of\ndifferent types of MAPF algorithms such as bounded-suboptimal algorithms,\nsuboptimal algorithms, and reinforcement-learning-based algorithms. Through\nboth single-planner experiments and comparisons between algorithms, we identify\npatterns where each algorithm excels and detect disparities in runtime or\nsuccess rates between different algorithms.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use the Quality Diversity (QD) algorithm with Neural Cellular Automata (NCA) to generate benchmark maps for Multi-Agent Path Finding (MAPF) algorithms. Previously, MAPF algorithms are tested using fixed, human-designed benchmark maps. However, such fixed benchmark maps have several problems. First, these maps may not cover all the potential failure scenarios for the algorithms. Second, when comparing different algorithms, fixed benchmark maps may introduce bias leading to unfair comparisons between algorithms. In this work, we take advantage of the QD algorithm and NCA with different objectives and diversity measures to generate maps with patterns to comprehensively understand the performance of MAPF algorithms and be able to make fair comparisons between two MAPF algorithms to provide further information on the selection between two algorithms. Empirically, we employ this technique to generate diverse benchmark maps to evaluate and compare the behavior of different types of MAPF algorithms such as bounded-suboptimal algorithms, suboptimal algorithms, and reinforcement-learning-based algorithms. Through both single-planner experiments and comparisons between algorithms, we identify patterns where each algorithm excels and detect disparities in runtime or success rates between different algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动生成多代理路径查找基准图的质量多样性方法
我们利用质量多样性(QD)算法和神经细胞自动机(NCA)为多代理路径查找(MAPF)算法生成基准地图。以往,MAPF 算法都是使用固定的、人为设计的基准图进行测试。然而,这种固定基准图存在几个问题:首先,这些基准图可能无法涵盖算法的所有潜在故障情况。其次,在比较不同算法时,固定基准图可能会引入偏差,导致算法之间的比较不公平。在这项工作中,我们利用 QD 算法和 NCA 的不同目标和多样性度量来生成具有模式的地图,以全面了解 MAPF 算法的性能,并能够在两种 MAPF 算法之间进行公平比较,从而为两种算法之间的选择提供进一步的信息。在实证研究中,我们利用该技术生成了多种基准图,以评估和比较不同类型的 MAPF 算法,如有界次优算法、次优算法和基于强化学习的算法。通过单规划实验和算法之间的比较,我们确定了每种算法的优势模式,并发现了不同算法在运行时间或成功率上的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1