Improving the Prediction of Individual Engagement in Recommendations Using Cognitive Models

Roderick Seow, Yunfan Zhao, Duncan Wood, Milind Tambe, Cleotilde Gonzalez
{"title":"Improving the Prediction of Individual Engagement in Recommendations Using Cognitive Models","authors":"Roderick Seow, Yunfan Zhao, Duncan Wood, Milind Tambe, Cleotilde Gonzalez","doi":"arxiv-2408.16147","DOIUrl":null,"url":null,"abstract":"For public health programs with limited resources, the ability to predict how\nbehaviors change over time and in response to interventions is crucial for\ndeciding when and to whom interventions should be allocated. Using data from a\nreal-world maternal health program, we demonstrate how a cognitive model based\non Instance-Based Learning (IBL) Theory can augment existing purely\ncomputational approaches. Our findings show that, compared to general\ntime-series forecasters (e.g., LSTMs), IBL models, which reflect human\ndecision-making processes, better predict the dynamics of individuals' states.\nAdditionally, IBL provides estimates of the volatility in individuals' states\nand their sensitivity to interventions, which can improve the efficiency of\ntraining of other time series models.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For public health programs with limited resources, the ability to predict how behaviors change over time and in response to interventions is crucial for deciding when and to whom interventions should be allocated. Using data from a real-world maternal health program, we demonstrate how a cognitive model based on Instance-Based Learning (IBL) Theory can augment existing purely computational approaches. Our findings show that, compared to general time-series forecasters (e.g., LSTMs), IBL models, which reflect human decision-making processes, better predict the dynamics of individuals' states. Additionally, IBL provides estimates of the volatility in individuals' states and their sensitivity to interventions, which can improve the efficiency of training of other time series models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用认知模型改进对个人参与推荐的预测
对于资源有限的公共卫生项目来说,预测行为如何随时间和干预措施而变化的能力对于决定何时以及向谁分配干预措施至关重要。利用来自全球孕产妇健康项目的数据,我们展示了基于实例学习(IBL)理论的认知模型如何增强现有的纯计算方法。我们的研究结果表明,与一般的时间序列预测模型(如 LSTM)相比,反映人类决策过程的 IBL 模型能更好地预测个体状态的动态变化。此外,IBL 还能估计个体状态的波动性及其对干预措施的敏感性,从而提高其他时间序列模型的训练效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1