Optimizing Collaboration of LLM based Agents for Finite Element Analysis

Chuan Tian, Yilei Zhang
{"title":"Optimizing Collaboration of LLM based Agents for Finite Element Analysis","authors":"Chuan Tian, Yilei Zhang","doi":"arxiv-2408.13406","DOIUrl":null,"url":null,"abstract":"This paper investigates the interactions between multiple agents within Large\nLanguage Models (LLMs) in the context of programming and coding tasks. We\nutilize the AutoGen framework to facilitate communication among agents,\nevaluating different configurations based on the success rates from 40 random\nruns for each setup. The study focuses on developing a flexible automation\nframework for applying the Finite Element Method (FEM) to solve linear elastic\nproblems. Our findings emphasize the importance of optimizing agent roles and\nclearly defining their responsibilities, rather than merely increasing the\nnumber of agents. Effective collaboration among agents is shown to be crucial\nfor addressing general FEM challenges. This research demonstrates the potential\nof LLM multi-agent systems to enhance computational automation in simulation\nmethodologies, paving the way for future advancements in engineering and\nartificial intelligence.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the interactions between multiple agents within Large Language Models (LLMs) in the context of programming and coding tasks. We utilize the AutoGen framework to facilitate communication among agents, evaluating different configurations based on the success rates from 40 random runs for each setup. The study focuses on developing a flexible automation framework for applying the Finite Element Method (FEM) to solve linear elastic problems. Our findings emphasize the importance of optimizing agent roles and clearly defining their responsibilities, rather than merely increasing the number of agents. Effective collaboration among agents is shown to be crucial for addressing general FEM challenges. This research demonstrates the potential of LLM multi-agent systems to enhance computational automation in simulation methodologies, paving the way for future advancements in engineering and artificial intelligence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化有限元分析中基于 LLM 的代理协作
本文以编程和编码任务为背景,研究了大型语言模型(LLM)中多个代理之间的交互。我们利用 AutoGen 框架来促进代理之间的交流,并根据每个设置的 40 次随机运行的成功率来评估不同的配置。研究重点是开发一个灵活的自动化框架,用于应用有限元法(FEM)解决线性弹性问题。我们的研究结果强调了优化代理角色和明确定义其职责的重要性,而不仅仅是增加代理数量。研究表明,代理之间的有效协作对于解决一般有限元难题至关重要。这项研究证明了 LLM 多代理系统在提高仿真方法计算自动化方面的潜力,为未来工程和人工智能领域的进步铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1