Ryo Ogawa, Guiming Wang, L. Wes Burger, Bronson K. Strickland, J. Brian Davis, Fred L. Cunningham
{"title":"Bayesian integrated species distribution models for hierarchical resource selection by a soaring bird","authors":"Ryo Ogawa, Guiming Wang, L. Wes Burger, Bronson K. Strickland, J. Brian Davis, Fred L. Cunningham","doi":"10.1016/j.ecoinf.2024.102787","DOIUrl":null,"url":null,"abstract":"Migratory birds exhibit seasonal geographic range (hereafter, range) dynamics during the annual cycle. Few studies have examined how migratory birds select their habitats for range occupancy at the species level and space use at the individual level simultaneously. We hypothesized that environmental variables directly related to fitness components would affect the range occupancy probabilities of migrants, whereas environment variables related to movements and flights would affect the space use intensities of migrants. We built Bayesian integrated species distribution models (ISDMs) to evaluate the effects of climate conditions, wind conditions, and landcover compositions on the seasonal range dynamics of American white pelicans (hereafter, pelican) during summer and winter. The ISDMs estimated the summer range occupancy probabilities of pelicans with Breeding Bird Survey data, winter range occupancy probabilities with Christmas Bird Count data, and summer and winter space-use intensity rates with eBird data jointly. We evaluated the predictive performance of ISDMs using independent datasets of pelican GPS locations. Integrated species distribution models outperformed the occupancy-only models in the predictive performance of occupancy probabilities. Climate conditions had opposite effects on the range occupancy probabilities between the breeding and non-breeding grounds, whereas landcovers had relatively consistent effects on range occupancy probabilities between the seasons.","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"75 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoinf.2024.102787","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Migratory birds exhibit seasonal geographic range (hereafter, range) dynamics during the annual cycle. Few studies have examined how migratory birds select their habitats for range occupancy at the species level and space use at the individual level simultaneously. We hypothesized that environmental variables directly related to fitness components would affect the range occupancy probabilities of migrants, whereas environment variables related to movements and flights would affect the space use intensities of migrants. We built Bayesian integrated species distribution models (ISDMs) to evaluate the effects of climate conditions, wind conditions, and landcover compositions on the seasonal range dynamics of American white pelicans (hereafter, pelican) during summer and winter. The ISDMs estimated the summer range occupancy probabilities of pelicans with Breeding Bird Survey data, winter range occupancy probabilities with Christmas Bird Count data, and summer and winter space-use intensity rates with eBird data jointly. We evaluated the predictive performance of ISDMs using independent datasets of pelican GPS locations. Integrated species distribution models outperformed the occupancy-only models in the predictive performance of occupancy probabilities. Climate conditions had opposite effects on the range occupancy probabilities between the breeding and non-breeding grounds, whereas landcovers had relatively consistent effects on range occupancy probabilities between the seasons.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.