Huma Shabbir, Muhammad Usman, Jalil Ur Rehman, Douxing Pan, Syed Mansoor Ali, Rajeh Alotaibi
{"title":"A DFT investigation of Sc-based perovskite-type hydrides XScH3 (X = K, Na) for hydrogen storage application","authors":"Huma Shabbir, Muhammad Usman, Jalil Ur Rehman, Douxing Pan, Syed Mansoor Ali, Rajeh Alotaibi","doi":"10.1007/s10825-024-02217-x","DOIUrl":null,"url":null,"abstract":"<div><p>The current study delves into the physical properties and hydrogen storage capabilities of XScH<sub>3</sub> (X = K, Na) using the CASTEP code by leveraging the GGA-PBE method. The examined values of the lattice constants for KScH<sub>3</sub> and NaScH<sub>3</sub>, are 4.19 and 4.07 Å, respectively. With a zero band gap revealing the metallic behavior, both compounds are discovered to be mechanically and thermodynamically stable in the cubic phase. Both compounds exhibit substantially enhanced conductivity and absorption in the low-energy range. While comparing NaScH<sub>3</sub> to KScH<sub>3</sub>, the reflectivity and refractive index values for the former are significantly higher. Both the materials possess anisotropic and hard nature represented by anisotropic factor, young’s modulus, bulk modulus and mean shear modulus. Both compounds exhibit the brittle nature which is investigated with the help of poisson ratio and Pugh’s ratio. The values of bulk modulus, young’s modulus and mean shear modulus are higher for KScH<sub>3</sub> than NaScH<sub>3</sub> showing more hardness in KScH<sub>3</sub>. The ratio of gravimetric hydrogen storage is found 3.48 and 4.27 wt %, for KScH<sub>3</sub> and NaScH<sub>3</sub>, respectively which shows that both materials can accommodate a good amount of hydrogen, however, NaScH<sub>3</sub> can be preferred for hydrogen storage applications due to the higher storage capacity of hydrogen.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 6","pages":"1238 - 1248"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02217-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The current study delves into the physical properties and hydrogen storage capabilities of XScH3 (X = K, Na) using the CASTEP code by leveraging the GGA-PBE method. The examined values of the lattice constants for KScH3 and NaScH3, are 4.19 and 4.07 Å, respectively. With a zero band gap revealing the metallic behavior, both compounds are discovered to be mechanically and thermodynamically stable in the cubic phase. Both compounds exhibit substantially enhanced conductivity and absorption in the low-energy range. While comparing NaScH3 to KScH3, the reflectivity and refractive index values for the former are significantly higher. Both the materials possess anisotropic and hard nature represented by anisotropic factor, young’s modulus, bulk modulus and mean shear modulus. Both compounds exhibit the brittle nature which is investigated with the help of poisson ratio and Pugh’s ratio. The values of bulk modulus, young’s modulus and mean shear modulus are higher for KScH3 than NaScH3 showing more hardness in KScH3. The ratio of gravimetric hydrogen storage is found 3.48 and 4.27 wt %, for KScH3 and NaScH3, respectively which shows that both materials can accommodate a good amount of hydrogen, however, NaScH3 can be preferred for hydrogen storage applications due to the higher storage capacity of hydrogen.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.