Tensor network Monte Carlo simulations for the two-dimensional random-bond Ising model

Tao Chen, Erdong Guo, Wanzhou Zhang, Pan Zhang, Youjin Deng
{"title":"Tensor network Monte Carlo simulations for the two-dimensional random-bond Ising model","authors":"Tao Chen, Erdong Guo, Wanzhou Zhang, Pan Zhang, Youjin Deng","doi":"arxiv-2409.06538","DOIUrl":null,"url":null,"abstract":"Disordered lattice spin systems are crucial in both theoretical and applied\nphysics. However, understanding their properties poses significant challenges\nfor Monte Carlo simulations. In this work, we investigate the two-dimensional\nrandom-bond Ising model using the recently proposed Tensor Network Monte Carlo\n(TNMC) method. This method generates biased samples from conditional\nprobabilities computed via tensor network contractions and corrects the bias\nusing the Metropolis scheme. Consequently, the proposals provided by tensor\nnetworks function as block updates for Monte Carlo simulations. Through\nextensive numerical experiments, we demonstrate that TNMC simulations can be\nperformed on lattices as large as $1024\\times 1024$ spins with moderate\ncomputational resources, a substantial increase from the previous maximum size\nof $64\\times 64$ in MCMC. Notably, we observe an almost complete absence of\ncritical slowing down, enabling the efficient collection of unbiased samples\nand averaging over a large number of random realizations of bond disorders. We\nsuccessfully pinpoint the multi-critical point along the Nishimori line with\nsignificant precision and accurately determined the bulk and surface critical\nexponents. Our findings suggest that TNMC is a highly efficient algorithm for\nexploring disordered and frustrated systems in two dimensions.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Disordered lattice spin systems are crucial in both theoretical and applied physics. However, understanding their properties poses significant challenges for Monte Carlo simulations. In this work, we investigate the two-dimensional random-bond Ising model using the recently proposed Tensor Network Monte Carlo (TNMC) method. This method generates biased samples from conditional probabilities computed via tensor network contractions and corrects the bias using the Metropolis scheme. Consequently, the proposals provided by tensor networks function as block updates for Monte Carlo simulations. Through extensive numerical experiments, we demonstrate that TNMC simulations can be performed on lattices as large as $1024\times 1024$ spins with moderate computational resources, a substantial increase from the previous maximum size of $64\times 64$ in MCMC. Notably, we observe an almost complete absence of critical slowing down, enabling the efficient collection of unbiased samples and averaging over a large number of random realizations of bond disorders. We successfully pinpoint the multi-critical point along the Nishimori line with significant precision and accurately determined the bulk and surface critical exponents. Our findings suggest that TNMC is a highly efficient algorithm for exploring disordered and frustrated systems in two dimensions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维随机键伊辛模型的张量网络蒙特卡罗模拟
无序晶格自旋系统在理论和应用物理学中都至关重要。然而,了解它们的特性对蒙特卡罗模拟提出了巨大挑战。在这项工作中,我们使用最近提出的张量网络蒙特卡罗(TNMC)方法研究了二维随机键伊辛模型。该方法通过张量网络收缩计算的条件概率生成有偏差的样本,并利用 Metropolis 方案修正偏差。因此,张量网络提供的建议可作为蒙特卡罗模拟的块更新。通过大量的数值实验,我们证明了 TNMC 模拟可以在中等计算资源下在高达 1024 美元/次 1024 美元自旋的晶格上进行,这比之前 MCMC 的最大尺寸 64 美元/次 64 美元有了大幅提高。值得注意的是,我们观察到几乎完全不存在临界减速现象,从而能够高效地收集无偏样本,并对大量随机实现的键紊乱进行平均。我们成功地沿着西森线精确定位了多临界点,并准确地确定了体临界和表临界分量。我们的研究结果表明,TNMC 是一种探索二维无序和受挫系统的高效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1