Full distribution of the ground-state energy of potentials with weak disorder

Naftali R. Smith
{"title":"Full distribution of the ground-state energy of potentials with weak disorder","authors":"Naftali R. Smith","doi":"arxiv-2409.06431","DOIUrl":null,"url":null,"abstract":"We study the full distribution $P(E)$ of the ground-state energy of a single\nquantum particle in a potential $V(\\bf x) = V_0(\\bf x) + \\sqrt{\\epsilon} \\,\nV_1(\\bf x)$, where $V_0(\\bf x)$ is a deterministic \"background\" trapping\npotential and $V_1(\\bf x)$ is the disorder. In the weak-disorder limit\n$\\epsilon \\to 0$, we find that $P(E)$ scales as $P(E) \\sim e^{-s(E)/\\epsilon}$.\nThe large-deviation function $s(E)$ is obtained by calculating the most likely\nconfiguration of $V(\\bf x)$ conditioned on a given ground-state energy $E$. We\nconsider arbitrary trapping potentials $V_0(\\bf x)$ and white-noise disorder\n$V_1(\\bf x)$. For infinite systems, we obtain $s(E)$ analytically in the limits\n$E \\to \\pm \\infty$ and $E \\simeq E_0$ where $E_0$ is the ground-state energy in\nthe absence of disorder. We perform explicit calculations for the case of a\nharmonic trap $V_0(\\bf x) \\propto x^2$. Next, we calculate $s(E)$ exactly for a\nfinite, periodic one-dimensional system with a homogeneous background\n$V_0(x)=0$. We find that, remarkably, the system exhibits a sudden change of\nbehavior as $E$ crosses a critical value $E_c < 0$: At $E>E_c$, the most likely\nconfiguration of $V(x)$ is homogeneous, whereas at $E < E_c$ it is\ninhomogeneous, thus spontaneously breaking the translational symmetry of the\nproblem. As a result, $s(E)$ is nonanalytic: Its second derivative jumps at\n$E=E_c$. We interpret this singularity as a second-order dynamical phase\ntransition.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the full distribution $P(E)$ of the ground-state energy of a single quantum particle in a potential $V(\bf x) = V_0(\bf x) + \sqrt{\epsilon} \, V_1(\bf x)$, where $V_0(\bf x)$ is a deterministic "background" trapping potential and $V_1(\bf x)$ is the disorder. In the weak-disorder limit $\epsilon \to 0$, we find that $P(E)$ scales as $P(E) \sim e^{-s(E)/\epsilon}$. The large-deviation function $s(E)$ is obtained by calculating the most likely configuration of $V(\bf x)$ conditioned on a given ground-state energy $E$. We consider arbitrary trapping potentials $V_0(\bf x)$ and white-noise disorder $V_1(\bf x)$. For infinite systems, we obtain $s(E)$ analytically in the limits $E \to \pm \infty$ and $E \simeq E_0$ where $E_0$ is the ground-state energy in the absence of disorder. We perform explicit calculations for the case of a harmonic trap $V_0(\bf x) \propto x^2$. Next, we calculate $s(E)$ exactly for a finite, periodic one-dimensional system with a homogeneous background $V_0(x)=0$. We find that, remarkably, the system exhibits a sudden change of behavior as $E$ crosses a critical value $E_c < 0$: At $E>E_c$, the most likely configuration of $V(x)$ is homogeneous, whereas at $E < E_c$ it is inhomogeneous, thus spontaneously breaking the translational symmetry of the problem. As a result, $s(E)$ is nonanalytic: Its second derivative jumps at $E=E_c$. We interpret this singularity as a second-order dynamical phase transition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弱无序电位基态能量的全面分布
我们研究了单量子粒子在势 $V(\bf x) = V_0(\bf x) + \sqrt\{epsilon}\,V_1(\bf x)$ 中基态能量的全分布 $P(E)$。\其中$V_0(\bf x)$是确定性的 "背景 "捕获势,$V_1(\bf x)$是无序势。在弱无序极限$\epsilon \to 0$中,我们发现$P(E)$的尺度为$P(E) \sim e^{-s(E)/\epsilon}$ 大偏差函数$s(E)$是通过计算给定基态能量$E$条件下$V(\bf x)$最可能的配置而得到的。我们考虑了任意捕获势 $V_0(\bf x)$ 和白噪声无序 $V_1(\bf x)$。对于无限系统,我们在极限$E \to \pm \infty$和$E \simeq E_0$中分析得到$s(E)$,其中$E_0$是无序状态下的基态能量。我们对谐波陷阱 $V_0(\bf x) \propto x^2$ 的情况进行了显式计算。接下来,我们精确计算了具有同质背景$V_0(x)=0$的无限周期一维系统的$s(E)$。我们发现,值得注意的是,当 $E$ 跨过临界值 $E_c < 0$ 时,系统表现出突然的行为变化:在 $E>E_c$ 时,$V(x)$ 最可能的配置是均质的,而在 $E < E_c$ 时,它是不均质的,从而自发地打破了问题的平移对称性。因此,$s(E)$ 是非解析的:它的二阶导数在$E=E_c$ 时跳跃。我们将这一奇点解释为二阶动力学相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1