Fingerprints of ordered self-assembled structures in the liquid phase of a hard-core, square-shoulder system

Michael Wassermair, Gerhard Kahl, Roland Roth, Andrew J. Archer
{"title":"Fingerprints of ordered self-assembled structures in the liquid phase of a hard-core, square-shoulder system","authors":"Michael Wassermair, Gerhard Kahl, Roland Roth, Andrew J. Archer","doi":"arxiv-2409.06447","DOIUrl":null,"url":null,"abstract":"We investigate the phase ordering (pattern formation) of systems of\ntwo-dimensional core-shell particles using Monte-Carlo (MC) computer\nsimulations and classical density functional theory (DFT). The particles\ninteract via a pair potential having a hard core and a repulsive square\nshoulder. Our simulations show that on cooling, the liquid state structure\nbecomes increasingly characterised by long wavelength density modulations, and\non further cooling forms a variety of other phases, including clustered,\nstriped and other patterned phases. In DFT, the hard core part of the potential\nis treated using either fundamental measure theory or a simple local density\napproximation, whereas the soft shoulder is treated using the random phase\napproximation. The different DFTs are bench-marked using large-scale\ngrand-canonical-MC and Gibbs-ensemble-MC simulations, demonstrating their\npredictive capabilities and shortcomings. We find that having the liquid state\nstatic structure factor $S(k)$ for wavenumber $k$ is sufficient to identify the\nFourier modes governing both the liquid and solid phases. This allows to\nidentify from easier-to-obtain liquid state data the wavenumbers relevant to\nthe periodic phases and to predict roughly where in the phase diagram these\npatterned phases arise.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the phase ordering (pattern formation) of systems of two-dimensional core-shell particles using Monte-Carlo (MC) computer simulations and classical density functional theory (DFT). The particles interact via a pair potential having a hard core and a repulsive square shoulder. Our simulations show that on cooling, the liquid state structure becomes increasingly characterised by long wavelength density modulations, and on further cooling forms a variety of other phases, including clustered, striped and other patterned phases. In DFT, the hard core part of the potential is treated using either fundamental measure theory or a simple local density approximation, whereas the soft shoulder is treated using the random phase approximation. The different DFTs are bench-marked using large-scale grand-canonical-MC and Gibbs-ensemble-MC simulations, demonstrating their predictive capabilities and shortcomings. We find that having the liquid state static structure factor $S(k)$ for wavenumber $k$ is sufficient to identify the Fourier modes governing both the liquid and solid phases. This allows to identify from easier-to-obtain liquid state data the wavenumbers relevant to the periodic phases and to predict roughly where in the phase diagram these patterned phases arise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硬核方肩体系液相中有序自组装结构的指纹图谱
我们利用蒙特卡洛(Monte-Carlo,MC)计算机模拟和经典密度泛函理论(DFT)研究了二维核壳粒子系统的相序(模式形成)。粒子通过具有硬核和斥性方肩的对势来相互作用。我们的模拟结果表明,在冷却过程中,液态结构越来越多地以长波长密度调制为特征,并在进一步冷却过程中形成各种其他相,包括簇状相、条状相和其他图案相。在 DFT 中,使用基本量度理论或简单的局部密度近似法处理电势的硬核部分,而使用随机相近似法处理软肩。我们使用大尺度大规范数模转换和吉布斯集合数模转换模拟对不同的 DFT 进行了标杆分析,展示了它们的预测能力和不足之处。我们发现,在波长为 $k$ 的情况下,液体静态结构因子 $S(k)$ 足以识别支配液相和固相的傅立叶模式。这样就可以从较容易获得的液态数据中识别出与周期相相关的波数,并大致预测出这些模式相在相图中的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1