Systematic Coarse-Graining of Sequence-Dependent Structure and Elasticity of Double-Stranded DNA

Enrico Skoruppa, Helmut Schiessel
{"title":"Systematic Coarse-Graining of Sequence-Dependent Structure and Elasticity of Double-Stranded DNA","authors":"Enrico Skoruppa, Helmut Schiessel","doi":"arxiv-2409.05510","DOIUrl":null,"url":null,"abstract":"Coarse-grained models have played an important role in the study of the\nbehavior of DNA at length scales beyond a few hundred base pairs.\nTraditionally, these models have relied on structurally featureless and\nsequence-independent approaches, such as the twistable worm-like chain.\nHowever, research over the past decade has illuminated the substantial impact\nof DNA sequence even at the kilo-base pair scale. Several robust\nsequence-dependent models have emerged, capturing intricacies at the base\npair-step level. Here we introduce an analytical framework for coarse-graining\nsuch models to the 2 to 40-base pair scale while preserving essential\nstructural and dynamical features. These faithful coarse-grained\nparametrizations enable efficient sampling of large molecules. Rather than\nproviding a fully parametrized model, we present the methodology and software\nnecessary for mapping any base pair-step model to the desired level of\ncoarse-graining. Finally, we provide application examples of our method,\nincluding estimates of the persistence length and effective torsional stiffness\nof DNA in a setup mimicking a freely orbiting tweezer, as well as simulations\nof intrinsically helical DNA.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coarse-grained models have played an important role in the study of the behavior of DNA at length scales beyond a few hundred base pairs. Traditionally, these models have relied on structurally featureless and sequence-independent approaches, such as the twistable worm-like chain. However, research over the past decade has illuminated the substantial impact of DNA sequence even at the kilo-base pair scale. Several robust sequence-dependent models have emerged, capturing intricacies at the base pair-step level. Here we introduce an analytical framework for coarse-graining such models to the 2 to 40-base pair scale while preserving essential structural and dynamical features. These faithful coarse-grained parametrizations enable efficient sampling of large molecules. Rather than providing a fully parametrized model, we present the methodology and software necessary for mapping any base pair-step model to the desired level of coarse-graining. Finally, we provide application examples of our method, including estimates of the persistence length and effective torsional stiffness of DNA in a setup mimicking a freely orbiting tweezer, as well as simulations of intrinsically helical DNA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系统粗粒化双链 DNA 的序列相关结构和弹性
粗粒度模型在研究长度超过几百个碱基对的 DNA 行为中发挥了重要作用。传统上,这些模型依赖于无结构特征和不依赖序列的方法,如扭曲的蠕虫链。然而,过去十年的研究表明,即使在千碱基对尺度上,DNA 序列也会产生重大影响。已经出现了几种依赖于序列的稳健模型,可以捕捉到碱基对级的复杂性。在这里,我们介绍了一种分析框架,用于将此类模型粗粒化到 2 到 40 碱基对尺度,同时保留基本的结构和动力学特征。这些忠实的粗粒度参数化可以实现大分子的高效采样。我们没有提供完全参数化的模型,而是介绍了将任何碱基对步骤模型映射到所需粗粒度水平所需的方法和软件。最后,我们提供了我们的方法的应用实例,包括在模仿自由轨道镊子的设置中对 DNA 的持续长度和有效扭转刚度的估计,以及对本征螺旋 DNA 的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1