Colloidoscope: Detecting Dense Colloids in 3d with Deep Learning

Abdelwahab Kawafi, Lars Kürten, Levke Ortlieb, Yushi Yang, Abraham Mauleon Amieva, James E. Hallett, C. Patrick Royall
{"title":"Colloidoscope: Detecting Dense Colloids in 3d with Deep Learning","authors":"Abdelwahab Kawafi, Lars Kürten, Levke Ortlieb, Yushi Yang, Abraham Mauleon Amieva, James E. Hallett, C. Patrick Royall","doi":"arxiv-2409.04603","DOIUrl":null,"url":null,"abstract":"Colloidoscope is a deep learning pipeline employing a 3D residual Unet\narchitecture, designed to enhance the tracking of dense colloidal suspensions\nthrough confocal microscopy. This methodology uses a simulated training dataset\nthat reflects a wide array of real-world imaging conditions, specifically\ntargeting high colloid volume fraction and low-contrast scenarios where\ntraditional detection methods struggle. Central to our approach is the use of\nexperimental signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and\npoint-spread-functions (PSFs) to accurately quantify and simulate the\nexperimental data. Our findings reveal that Colloidoscope achieves superior\nrecall in particle detection (finds more particles) compared to conventional\nheuristic methods. Simultaneously, high precision is maintained (high fraction\nof true positives.) The model demonstrates a notable robustness to\nphotobleached samples, thereby prolonging the imaging time and number of frames\nthan may be acquired. Furthermore, Colloidoscope maintains small scale\nresolution sufficient to classify local structural motifs. Evaluated across\nboth simulated and experimental datasets, Colloidoscope brings the advancements\nin computer vision offered by deep learning to particle tracking at high volume\nfractions. We offer a promising tool for researchers in the soft matter\ncommunity, this model is deployed and available to use pretrained:\nhttps://github.com/wahabk/colloidoscope.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidoscope is a deep learning pipeline employing a 3D residual Unet architecture, designed to enhance the tracking of dense colloidal suspensions through confocal microscopy. This methodology uses a simulated training dataset that reflects a wide array of real-world imaging conditions, specifically targeting high colloid volume fraction and low-contrast scenarios where traditional detection methods struggle. Central to our approach is the use of experimental signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and point-spread-functions (PSFs) to accurately quantify and simulate the experimental data. Our findings reveal that Colloidoscope achieves superior recall in particle detection (finds more particles) compared to conventional heuristic methods. Simultaneously, high precision is maintained (high fraction of true positives.) The model demonstrates a notable robustness to photobleached samples, thereby prolonging the imaging time and number of frames than may be acquired. Furthermore, Colloidoscope maintains small scale resolution sufficient to classify local structural motifs. Evaluated across both simulated and experimental datasets, Colloidoscope brings the advancements in computer vision offered by deep learning to particle tracking at high volume fractions. We offer a promising tool for researchers in the soft matter community, this model is deployed and available to use pretrained: https://github.com/wahabk/colloidoscope.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胶体镜:利用深度学习检测 3D 中的致密胶体
Colloidoscope 是一种深度学习管道,采用三维残余 Unet 架构,旨在通过共聚焦显微镜增强对高密度胶体悬浮液的跟踪。这种方法使用的模拟训练数据集反映了现实世界的各种成像条件,特别是针对传统检测方法难以解决的高胶体体积分数和低对比度场景。我们方法的核心是使用实验信噪比(SNR)、对比度与噪声比(CNR)和点扩散函数(PSF)来精确量化和模拟实验数据。我们的研究结果表明,与传统的启发式方法相比,胶体镜在粒子检测方面具有更高的回收率(发现更多粒子)。同时,该模型还能保持较高的精确度(较高的真阳性率)。该模型在处理大量样本时表现出了显著的鲁棒性,从而延长了成像时间和可获取的帧数。此外,胶体镜还能保持小尺度的分辨率,足以对局部结构图案进行分类。通过对模拟数据集和实验数据集的评估,胶体镜将深度学习在计算机视觉方面的进步应用到了大体积颗粒跟踪中。我们为软物质领域的研究人员提供了一种前景广阔的工具,该模型已经部署并可用于预训练:https://github.com/wahabk/colloidoscope。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1