Bayesian inference of wall torques for active Brownian particles

Sascha Lambert, Merle Duchene, Stefan Klumpp
{"title":"Bayesian inference of wall torques for active Brownian particles","authors":"Sascha Lambert, Merle Duchene, Stefan Klumpp","doi":"arxiv-2409.03533","DOIUrl":null,"url":null,"abstract":"The motility of living things and synthetic self-propelled objects is often\ndescribed using Active Brownian particles. To capture the interaction of these\nparticles with their often complex environment, this model can be augmented\nwith empirical forces or torques, for example, to describe their alignment with\nan obstacle or wall after a collision. Here, we assess the quality of these\nempirical models by comparing their output predictions with trajectories of\nrod-shaped active particles that scatter sterically at a flat wall. We employ a\nclassical least-squares method to evaluate the instantaneous torque. In\naddition, we lay out a Bayesian inference procedure to construct the posterior\ndistribution of plausible model parameters. In contrast to the least squares\nfit, the Bayesian approach does not require orientational data of the active\nparticle and can readily be applied to experimental tracking data.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The motility of living things and synthetic self-propelled objects is often described using Active Brownian particles. To capture the interaction of these particles with their often complex environment, this model can be augmented with empirical forces or torques, for example, to describe their alignment with an obstacle or wall after a collision. Here, we assess the quality of these empirical models by comparing their output predictions with trajectories of rod-shaped active particles that scatter sterically at a flat wall. We employ a classical least-squares method to evaluate the instantaneous torque. In addition, we lay out a Bayesian inference procedure to construct the posterior distribution of plausible model parameters. In contrast to the least squares fit, the Bayesian approach does not require orientational data of the active particle and can readily be applied to experimental tracking data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
活动布朗粒子壁面力矩的贝叶斯推理
生物和合成自走物体的运动通常用主动布朗粒子来描述。为了捕捉这些粒子与其通常复杂的环境之间的相互作用,可以用经验力或力矩来增强这一模型,例如,用来描述碰撞后粒子与障碍物或墙壁的对齐情况。在这里,我们将这些经验模型的输出预测结果与在平面墙壁上发生立体散射的杆状活性粒子的轨迹进行比较,从而评估这些模型的质量。我们采用经典的最小二乘法来评估瞬时扭矩。此外,我们还制定了贝叶斯推理程序,以构建可信模型参数的后分布。与最小二乘法相比,贝叶斯推理方法不需要活动粒子的方向数据,可以很容易地应用于实验跟踪数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1