Breaking the Brownian Barrier: Models and Manifestations of Molecular Diffusion in Complex Fluids

Harish Srinivasan, V. K. Sharma, S. Mitra
{"title":"Breaking the Brownian Barrier: Models and Manifestations of Molecular Diffusion in Complex Fluids","authors":"Harish Srinivasan, V. K. Sharma, S. Mitra","doi":"arxiv-2409.04199","DOIUrl":null,"url":null,"abstract":"Over a century ago, Einstein formulated a precise mathematical model for\ndescribing Brownian motion. While this model adequately explains the diffusion\nof micron-sized particles in fluids, its limitations become apparent when\napplied to molecular self-diffusion in fluids. The foundational principles of\nGaussianity and Markovianity, central to the Brownian diffusion paradigm, are\ninsufficient for describing molecular diffusion, particularly in complex fluids\ncharacterized by intricate intermolecular interactions and hindered relaxation\nprocesses. This perspective delves into the nuanced behavior observed in\ndiverse complex fluids, including molecular self-assembly, deep eutectic\nsolvents, and ionic liquids, with a specific focus on modeling self-diffusion\nwithin these media. We explore the potential of extending diffusion models to\nincorporate non-Gaussian and non-Markovian effects by augmenting the Brownian\nmodel using non-local diffusion equations. Further, we validate the\napplicability of these models by utilizing them to describe results from\nquasielastic neutron scattering and MD simulations.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over a century ago, Einstein formulated a precise mathematical model for describing Brownian motion. While this model adequately explains the diffusion of micron-sized particles in fluids, its limitations become apparent when applied to molecular self-diffusion in fluids. The foundational principles of Gaussianity and Markovianity, central to the Brownian diffusion paradigm, are insufficient for describing molecular diffusion, particularly in complex fluids characterized by intricate intermolecular interactions and hindered relaxation processes. This perspective delves into the nuanced behavior observed in diverse complex fluids, including molecular self-assembly, deep eutectic solvents, and ionic liquids, with a specific focus on modeling self-diffusion within these media. We explore the potential of extending diffusion models to incorporate non-Gaussian and non-Markovian effects by augmenting the Brownian model using non-local diffusion equations. Further, we validate the applicability of these models by utilizing them to describe results from quasielastic neutron scattering and MD simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
打破布朗障碍:复杂流体中的分子扩散模型与表现形式
一个多世纪前,爱因斯坦提出了描述布朗运动的精确数学模型。虽然这一模型能够充分解释微米大小的粒子在流体中的扩散,但当它应用于流体中的分子自扩散时,其局限性就显而易见了。高斯性和马尔可夫性的基本原理是布朗扩散范式的核心,但不足以描述分子扩散,尤其是在分子间相互作用错综复杂、弛豫过程受阻的复杂流体中。本视角深入研究了在多种复杂流体(包括分子自组装、深共晶溶剂和离子液体)中观察到的细微行为,特别关注这些介质中的自扩散建模。通过使用非局部扩散方程增强布朗模型,我们探索了扩展扩散模型以纳入非高斯和非马尔可夫效应的潜力。此外,我们还利用这些模型来描述类弹性中子散射和 MD 模拟的结果,从而验证了这些模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1