Multi‐omics integration analysis reveals the molecular mechanisms of drought adaptation in homologous tetraploid alfalfa(Medicago sativa ‘Xinjiang‐Daye’)

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2024-09-12 DOI:10.1111/ppl.14476
Jianwei Qi, Yongzhong Luo, Songsong Lu, Hui Liu, Haixia Huang, Yingde Qiu, Xiaotong Zhou, Chao Ma
{"title":"Multi‐omics integration analysis reveals the molecular mechanisms of drought adaptation in homologous tetraploid alfalfa(Medicago sativa ‘Xinjiang‐Daye’)","authors":"Jianwei Qi, Yongzhong Luo, Songsong Lu, Hui Liu, Haixia Huang, Yingde Qiu, Xiaotong Zhou, Chao Ma","doi":"10.1111/ppl.14476","DOIUrl":null,"url":null,"abstract":"Drought stress is a predominant abiotic factor leading to decreased alfalfa yield. Genomic ploidy differences contribute to varying adaptation mechanisms of different alfalfa cultivars to drought conditions. This study employed a multi‐omics approach to characterize the molecular basis of drought tolerance in a tetraploid variant of alfalfa (<jats:italic>Medicago sativa</jats:italic>, Xinjiang‐Daye). Under drought treatment, a total of 4446 genes, 859 proteins, and 524 metabolites showed significant differences in abundance. Integrative analysis of the multi‐omics data revealed that regulatory modules involved in flavonoid biosynthesis, plant hormone signalling transduction, linoleic acid metabolism, and amino acid biosynthesis play crucial roles in alfalfa adaptation to drought stress. The severity of drought led to the substantial accumulation of flavonoids, plant hormones, free fatty acids, amino acids, and their derivatives in the leaves. Genes such as <jats:italic>PAL</jats:italic>, <jats:italic>4CL</jats:italic>, <jats:italic>CHI</jats:italic>, <jats:italic>CHS</jats:italic>, <jats:italic>PP2C</jats:italic>, <jats:italic>ARF_3</jats:italic>, and <jats:italic>AHP_4</jats:italic> play pivotal regulatory roles in flavonoid biosynthesis and hormone signalling pathways. Differential expression of the <jats:italic>LOX</jats:italic> gene emerged as a key factor in the elevated levels of free fatty acids. Upregulation of <jats:italic>P5CS_1</jats:italic> and <jats:italic>GOT1/2</jats:italic> contributed significantly to the accumulation of Pro and Phe contents. <jats:italic>ERF19</jats:italic> emerged as a principal positive regulator governing the synthesis of the aforementioned compounds. Furthermore, observations suggest that Xinjiang‐Daye alfalfa may exhibit widespread post‐transcriptional regulatory mechanisms in adapting to drought stress. The study findings unveil the critical mechanisms by which Xinjiang‐Daye alfalfa adapts to drought stress, offering novel insights for the improvement of alfalfa germplasm resources.","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14476","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Drought stress is a predominant abiotic factor leading to decreased alfalfa yield. Genomic ploidy differences contribute to varying adaptation mechanisms of different alfalfa cultivars to drought conditions. This study employed a multi‐omics approach to characterize the molecular basis of drought tolerance in a tetraploid variant of alfalfa (Medicago sativa, Xinjiang‐Daye). Under drought treatment, a total of 4446 genes, 859 proteins, and 524 metabolites showed significant differences in abundance. Integrative analysis of the multi‐omics data revealed that regulatory modules involved in flavonoid biosynthesis, plant hormone signalling transduction, linoleic acid metabolism, and amino acid biosynthesis play crucial roles in alfalfa adaptation to drought stress. The severity of drought led to the substantial accumulation of flavonoids, plant hormones, free fatty acids, amino acids, and their derivatives in the leaves. Genes such as PAL, 4CL, CHI, CHS, PP2C, ARF_3, and AHP_4 play pivotal regulatory roles in flavonoid biosynthesis and hormone signalling pathways. Differential expression of the LOX gene emerged as a key factor in the elevated levels of free fatty acids. Upregulation of P5CS_1 and GOT1/2 contributed significantly to the accumulation of Pro and Phe contents. ERF19 emerged as a principal positive regulator governing the synthesis of the aforementioned compounds. Furthermore, observations suggest that Xinjiang‐Daye alfalfa may exhibit widespread post‐transcriptional regulatory mechanisms in adapting to drought stress. The study findings unveil the critical mechanisms by which Xinjiang‐Daye alfalfa adapts to drought stress, offering novel insights for the improvement of alfalfa germplasm resources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多组学整合分析揭示同源四倍体紫花苜蓿(Medicago sativa 'Xinjiang-Daye' )干旱适应的分子机制
干旱胁迫是导致紫花苜蓿减产的主要非生物因素。基因组倍性差异导致不同紫花苜蓿栽培品种对干旱条件的适应机制不同。本研究采用多组学方法表征了苜蓿四倍体变种(Medicago sativa, Xinjiang-Daye)耐旱性的分子基础。在干旱处理条件下,共有4446个基因、859个蛋白质和524个代谢物的丰度出现显著差异。多组学数据的整合分析表明,黄酮类化合物生物合成、植物激素信号转导、亚油酸代谢和氨基酸生物合成等调控模块在紫花苜蓿适应干旱胁迫过程中发挥了关键作用。干旱的严重程度导致黄酮类化合物、植物激素、游离脂肪酸、氨基酸及其衍生物在叶片中大量积累。PAL、4CL、CHI、CHS、PP2C、ARF_3 和 AHP_4 等基因在类黄酮生物合成和激素信号途径中起着关键的调控作用。LOX 基因的差异表达是游离脂肪酸水平升高的关键因素。P5CS_1 和 GOT1/2 基因的上调极大地促进了 Pro 和 Phe 含量的积累。ERF19是上述化合物合成的主要正向调节因子。此外,观察结果表明,新疆大叶紫花苜蓿在适应干旱胁迫时可能表现出广泛的转录后调控机制。研究结果揭示了新疆大叶紫花苜蓿适应干旱胁迫的关键机制,为紫花苜蓿种质资源的改良提供了新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
Changes in leaf lifespan, nitrogen resorption, and mean residence time of leaf nitrogen along a soil fertility gradient in an evergreen oak tree Multi‐omics integration analysis reveals the molecular mechanisms of drought adaptation in homologous tetraploid alfalfa(Medicago sativa ‘Xinjiang‐Daye’) Genome‐wide association analysis identifies candidates of three bulb traits in garlic Withania somnifera osmotin (WsOsm) confers stress tolerance in tobacco and establishes novel interactions with the defensin protein (WsDF) Synergistic effects of melatonin and glycine betaine on seed germination, seedling growth, and biochemical attributes of maize under salinity stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1