Electro-Thermo-Optical Simulations of Phase-Change GST-SiC Plasmonic Optical Modulator for Telecom Applications

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2024-09-13 DOI:10.1002/adts.202400546
Mobina Abbaspour, Mahmoud Nikoufard, Alireza Malek Mohammad
{"title":"Electro-Thermo-Optical Simulations of Phase-Change GST-SiC Plasmonic Optical Modulator for Telecom Applications","authors":"Mobina Abbaspour, Mahmoud Nikoufard, Alireza Malek Mohammad","doi":"10.1002/adts.202400546","DOIUrl":null,"url":null,"abstract":"This study proposes a novel plasmonic optical modulator integrating the phase-change material germanium-antimony-tellurium (GST) with a silicon carbide (SiC) waveguide for telecom applications. The design utilizes a 10 nm GST cladding layer and a 290 nm thick, 100 nm wide SiC ridge waveguide, with gold electrodes enabling electrothermal switching of GST between amorphous and crystalline states. Comprehensive simulations spanning optical, electrical-thermal, and opto-thermal domains investigated the modulator's performance. Optical simulations examine the effects of wavelength, ridge width, and GST thickness on effective refractive index, confinement factor, and effective area. Electrical-thermal simulations determines voltage pulse parameters for phase transitions and analyzed temperature distributions. Opto-thermal simulations explored temperature's influence on the effective refractive index during phase transitions. Results demonstrate the modulator's potential, achieving 160 Mb s<sup>−1</sup> at 1.55 µm. The SiC-GST integration offers high thermal conductivity, low thermo-optic coefficient, and significant refractive index contrast between GST phases, enabling efficient light modulation for high-performance, compact, energy-efficient optical modulators advancing integrated photonics.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"171 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400546","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a novel plasmonic optical modulator integrating the phase-change material germanium-antimony-tellurium (GST) with a silicon carbide (SiC) waveguide for telecom applications. The design utilizes a 10 nm GST cladding layer and a 290 nm thick, 100 nm wide SiC ridge waveguide, with gold electrodes enabling electrothermal switching of GST between amorphous and crystalline states. Comprehensive simulations spanning optical, electrical-thermal, and opto-thermal domains investigated the modulator's performance. Optical simulations examine the effects of wavelength, ridge width, and GST thickness on effective refractive index, confinement factor, and effective area. Electrical-thermal simulations determines voltage pulse parameters for phase transitions and analyzed temperature distributions. Opto-thermal simulations explored temperature's influence on the effective refractive index during phase transitions. Results demonstrate the modulator's potential, achieving 160 Mb s−1 at 1.55 µm. The SiC-GST integration offers high thermal conductivity, low thermo-optic coefficient, and significant refractive index contrast between GST phases, enabling efficient light modulation for high-performance, compact, energy-efficient optical modulators advancing integrated photonics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电信应用的相变 GST-SiC 质子光调制器的电热光学模拟
本研究提出了一种新型等离子体光调制器,它将相变材料锗锑碲 (GST) 与碳化硅 (SiC) 波导集成在一起,用于电信应用。该设计采用了 10 nm 的 GST 包层和 290 nm 厚、100 nm 宽的碳化硅脊波导,金电极可实现 GST 在非晶态和结晶态之间的电热切换。横跨光学、电热和光热领域的综合模拟研究了调制器的性能。光学模拟研究了波长、脊宽和 GST 厚度对有效折射率、约束因子和有效面积的影响。电热模拟确定了相变的电压脉冲参数,并分析了温度分布。光热模拟探索了相变过程中温度对有效折射率的影响。结果证明了该调制器的潜力,在 1.55 µm 波长下达到了 160 Mb s-1。SiC-GST 集成具有高热导率、低热光学系数以及 GST 相之间显著的折射率对比,可实现高效的光调制,用于高性能、紧凑型、高能效的光调制器,推动集成光子学的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
Machine-Learned Modeling for Accelerating Organic Solvent Design in Metal-Ion Batteries Topology Optimization Enabled High Performance and Easy-to-Fabricate Hybrid Photonic Crystals Pnictogen Atom Substitution to Modify the Electronic and Magnetic Properties of SiS2 Monolayer: A DFT Study Multifunctional Reconfigurable Vanadium Dioxide Integrated Metasurface for Reflection, Asymmetric Transmission and Cross-Polarization Conversion in Terahertz Region A Detailed First-Principles Study of the Structural, Elastic, Thermomechanical, and Optoelectronic Properties of Binary Rare-Earth Tritelluride NdTe3 (Adv. Theory Simul. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1