{"title":"Comparative analysis of radiant air-conditioning systems combined with two different types of solar-powered dehumidification methods","authors":"Gang Li, Yixuan Liao, Yubo Dou, Jiaqi Sun, Jia Nan, Jinlong Chen","doi":"10.1088/1742-6596/2838/1/012038","DOIUrl":null,"url":null,"abstract":"This paper proposes a solar liquid desiccant radiation air-conditioning system(SLDRS) and a solar desiccant wheel radiant air-conditioning system(SDWRS) that combine with a phase change energy storage radiation terminal, solar energy, and heat pump system. The models of the two systems are simulated with the transient system tool (TRNSYS) to compare the refrigeration and dehumidification effects and energy saving of the two systems. The results show that the total refrigeration capacity of the SLDRS is reduced by 20.45% compared with the solar desiccant wheel radiation air-conditioning system, the monthly average dehumidification capacity is increased by 37.09%, and the total energy consumption is reduced by 712.9 KW·h. It is evident that the cooling and dehumidifying effect and energy efficiency of the SLDRS are superior to those of the SDWRS.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2838/1/012038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a solar liquid desiccant radiation air-conditioning system(SLDRS) and a solar desiccant wheel radiant air-conditioning system(SDWRS) that combine with a phase change energy storage radiation terminal, solar energy, and heat pump system. The models of the two systems are simulated with the transient system tool (TRNSYS) to compare the refrigeration and dehumidification effects and energy saving of the two systems. The results show that the total refrigeration capacity of the SLDRS is reduced by 20.45% compared with the solar desiccant wheel radiation air-conditioning system, the monthly average dehumidification capacity is increased by 37.09%, and the total energy consumption is reduced by 712.9 KW·h. It is evident that the cooling and dehumidifying effect and energy efficiency of the SLDRS are superior to those of the SDWRS.