Photocatalytic performance of copper ferrite/polypyrrole nanohybrids: studies on visible light induced degradation of urea and microwave-assisted degradation of polyethylene films
{"title":"Photocatalytic performance of copper ferrite/polypyrrole nanohybrids: studies on visible light induced degradation of urea and microwave-assisted degradation of polyethylene films","authors":"Shayista Gaffar, Ufana Riaz","doi":"10.1007/s13233-024-00311-4","DOIUrl":null,"url":null,"abstract":"<p>The present work reports formulation of nanohybrids of CuFe<sub>2</sub>O<sub>4</sub> using polypyrrole (PPy) in the weight ratios of 1%, 3% and 5%. The synthesized nanohybrids were characterized using FTIR, UV–Vis, XRD and SEM–EDS. The optical band gaps were calculated to be 2.31 eV, 2.11 eV and 1.74 eV for 1-PPy/CuFe<sub>2</sub>O<sub>4</sub>, 3-PPy/CuFe<sub>2</sub>O<sub>4</sub>, and 5-PPy/CuFe<sub>2</sub>O<sub>4</sub>, respectively. The photocatalytic degradation of urea and polyethene (PE) was carried out under visible light irradiation to study the effect of degradation of pollutants in presence of an organic–inorganic hybrid photocatalyst. The nanohybrids showed superior photocatalytic performance when compared with pure CuFe<sub>2</sub>O<sub>4</sub>. The maximum photocatalytic degradation was found to be 62% within 120 min using 5-Ppy/CuFe<sub>2</sub>O<sub>4</sub> as photocatalyst and 40% degradation of PE films was achieved under microwave irradiation. The catalysts showed promising results for the highly efficient degradation of polymers.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><p>Photocatalytic activity of polypyrrole/copper ferrite nanohybrids</p>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"11 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13233-024-00311-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The present work reports formulation of nanohybrids of CuFe2O4 using polypyrrole (PPy) in the weight ratios of 1%, 3% and 5%. The synthesized nanohybrids were characterized using FTIR, UV–Vis, XRD and SEM–EDS. The optical band gaps were calculated to be 2.31 eV, 2.11 eV and 1.74 eV for 1-PPy/CuFe2O4, 3-PPy/CuFe2O4, and 5-PPy/CuFe2O4, respectively. The photocatalytic degradation of urea and polyethene (PE) was carried out under visible light irradiation to study the effect of degradation of pollutants in presence of an organic–inorganic hybrid photocatalyst. The nanohybrids showed superior photocatalytic performance when compared with pure CuFe2O4. The maximum photocatalytic degradation was found to be 62% within 120 min using 5-Ppy/CuFe2O4 as photocatalyst and 40% degradation of PE films was achieved under microwave irradiation. The catalysts showed promising results for the highly efficient degradation of polymers.
Graphical abstract
Photocatalytic activity of polypyrrole/copper ferrite nanohybrids
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.