Sara Yazdan Bakhsh, Kingsley Ayisi, Reimund P. Rötter, Wayne Twine, Jan-Henning Feil
{"title":"Typologies of South African small-scale farmers and their risk perceptions: an unsupervised machine learning approach","authors":"Sara Yazdan Bakhsh, Kingsley Ayisi, Reimund P. Rötter, Wayne Twine, Jan-Henning Feil","doi":"10.1108/caer-09-2022-0201","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Small-scale farmers are highly heterogeneous with regard to their types of farming, levels of technology adoption, degree of commercialization and many other factors. Such heterogeneous types, respectively groups of small-scale farming systems require different forms of government interventions. This paper applies a machine learning approach to analyze the typologies of small-scale farmers in South Africa based on a wide range of objective variables regarding their personal, farm and context characteristics, which support an effective, target-group-specific design and communication of policies.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A cluster analysis is performed based on a comprehensive quantitative and qualitative survey among 212 small-scale farmers, which was conducted in 2019 in the Limpopo Province of South Africa. An unsupervised machine learning approach, namely Partitioning Around Medoids (PAM), is applied to the survey data. Subsequently, the farmers' risk perceptions between the different clusters are analyzed and compared.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>According to the results of the cluster analysis, the small-scale farmers of the investigated sample can be grouped into four types: subsistence-oriented farmers, semi-subsistence livestock-oriented farmers, semi-subsistence crop-oriented farmers and market-oriented farmers. The subsequently analyzed risk perceptions and attitudes differ considerably between these types.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This is the first typologisation of small-scale farmers based on a comprehensive collection of quantitative and qualitative variables, which can all be considered in the analysis through the application of an unsupervised machine learning approach, namely PAM. Such typologisation is a pre-requisite for the design of more target-group-specific and suitable policy interventions.</p><!--/ Abstract__block -->","PeriodicalId":10095,"journal":{"name":"China Agricultural Economic Review","volume":"2 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Agricultural Economic Review","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1108/caer-09-2022-0201","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Small-scale farmers are highly heterogeneous with regard to their types of farming, levels of technology adoption, degree of commercialization and many other factors. Such heterogeneous types, respectively groups of small-scale farming systems require different forms of government interventions. This paper applies a machine learning approach to analyze the typologies of small-scale farmers in South Africa based on a wide range of objective variables regarding their personal, farm and context characteristics, which support an effective, target-group-specific design and communication of policies.
Design/methodology/approach
A cluster analysis is performed based on a comprehensive quantitative and qualitative survey among 212 small-scale farmers, which was conducted in 2019 in the Limpopo Province of South Africa. An unsupervised machine learning approach, namely Partitioning Around Medoids (PAM), is applied to the survey data. Subsequently, the farmers' risk perceptions between the different clusters are analyzed and compared.
Findings
According to the results of the cluster analysis, the small-scale farmers of the investigated sample can be grouped into four types: subsistence-oriented farmers, semi-subsistence livestock-oriented farmers, semi-subsistence crop-oriented farmers and market-oriented farmers. The subsequently analyzed risk perceptions and attitudes differ considerably between these types.
Originality/value
This is the first typologisation of small-scale farmers based on a comprehensive collection of quantitative and qualitative variables, which can all be considered in the analysis through the application of an unsupervised machine learning approach, namely PAM. Such typologisation is a pre-requisite for the design of more target-group-specific and suitable policy interventions.
期刊介绍:
Published in association with China Agricultural University and the Chinese Association for Agricultural Economics, China Agricultural Economic Review publishes academic writings by international scholars, and particularly encourages empirical work that can be replicated and extended by others; and research articles that employ econometric and statistical hypothesis testing, optimization and simulation models. The journal aims to publish research which can be applied to China’s agricultural and rural policy-making process, the development of the agricultural economics discipline and to developing countries hoping to learn from China’s agricultural and rural development.