{"title":"A parametric and feature-based CAD dataset to support human-computer interaction for advanced 3D shape learning","authors":"Rubin Fan, Fazhi He, Yuxin Liu, Yupeng Song, Linkun Fan, Xiaohu Yan","doi":"10.3233/ica-240744","DOIUrl":null,"url":null,"abstract":"3D shape learning is an important research topic in computer vision, in which the datasets play a critical role. However, most of the existing 3D datasets use voxels, point clouds, mesh, and B-rep, which are not parametric and feature-based. Thus they can not support the generation of real-world engineering computer-aided design (CAD) models with complicated shape features. Furthermore, they are based on 3D geometry results without human-computer interaction (HCI) history. This work is the first to provide a full parametric and feature-based CAD dataset with a selection mechanism to support HCI in 3D learning. First, unlike existing datasets, mainly composed of simple features (typical sketch and extrude), we devise complicated engineering features, such as fillet, chamfer, mirror, pocket, groove, and revolve. Second, different from the monotonous combination of features, we invent a select mechanism to mimic how human focuses on and selects a particular topological entity. The proposed mechanism establishes the relationships among complicated engineering features, which fully express the design intention and design knowledge of human CAD engineers. Therefore, it can process advanced 3D features for real-world engineering shapes. The experiments show that the proposed dataset outperforms existing CAD datasets in both reconstruction and generation tasks. In quantitative experiment, the proposed dataset demonstrates better prediction accuracy than other parametric datasets. Furthermore, CAD models generated from the proposed dataset comply with semantics of the human CAD engineers and can be edited and redesigned via mainstream industrial CAD software.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"47 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-240744","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
3D shape learning is an important research topic in computer vision, in which the datasets play a critical role. However, most of the existing 3D datasets use voxels, point clouds, mesh, and B-rep, which are not parametric and feature-based. Thus they can not support the generation of real-world engineering computer-aided design (CAD) models with complicated shape features. Furthermore, they are based on 3D geometry results without human-computer interaction (HCI) history. This work is the first to provide a full parametric and feature-based CAD dataset with a selection mechanism to support HCI in 3D learning. First, unlike existing datasets, mainly composed of simple features (typical sketch and extrude), we devise complicated engineering features, such as fillet, chamfer, mirror, pocket, groove, and revolve. Second, different from the monotonous combination of features, we invent a select mechanism to mimic how human focuses on and selects a particular topological entity. The proposed mechanism establishes the relationships among complicated engineering features, which fully express the design intention and design knowledge of human CAD engineers. Therefore, it can process advanced 3D features for real-world engineering shapes. The experiments show that the proposed dataset outperforms existing CAD datasets in both reconstruction and generation tasks. In quantitative experiment, the proposed dataset demonstrates better prediction accuracy than other parametric datasets. Furthermore, CAD models generated from the proposed dataset comply with semantics of the human CAD engineers and can be edited and redesigned via mainstream industrial CAD software.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.