Probing the Wannier function of Crystalline Solids with Angle‐Resolved Photoemission Spectroscopy

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Interfaces Pub Date : 2024-08-26 DOI:10.1002/admi.202400427
Yu He, Frederick J. Walker, Charles H. Ahn, Sohrab Ismail‐Beigi
{"title":"Probing the Wannier function of Crystalline Solids with Angle‐Resolved Photoemission Spectroscopy","authors":"Yu He, Frederick J. Walker, Charles H. Ahn, Sohrab Ismail‐Beigi","doi":"10.1002/admi.202400427","DOIUrl":null,"url":null,"abstract":"Angle‐resolved photoemission spectroscopy (ARPES) has been a widely adopted technique in the studies of quantum materials. The surface sensitivity of photoelectric effect also makes it a powerful tool to investigate surface and shallow interface phenomena. While an overwhelming majority of its use focuses on extracting the eigenenergy of the electron Bloch states in momentum space, attempts to extract information of the wave function via ARPES has been limited to molecular systems. In this perspective, it is proposed and advocated use ARPES to investigate and unravel wave function properties, as opposed to only the electron energy‐momentum dispersion relation, in crystalline solids and their interfaces. This can help enhance the rapidly growing development of material properties based on the spatial and geometric properties of the electronic wave functions.","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"21 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/admi.202400427","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Angle‐resolved photoemission spectroscopy (ARPES) has been a widely adopted technique in the studies of quantum materials. The surface sensitivity of photoelectric effect also makes it a powerful tool to investigate surface and shallow interface phenomena. While an overwhelming majority of its use focuses on extracting the eigenenergy of the electron Bloch states in momentum space, attempts to extract information of the wave function via ARPES has been limited to molecular systems. In this perspective, it is proposed and advocated use ARPES to investigate and unravel wave function properties, as opposed to only the electron energy‐momentum dispersion relation, in crystalline solids and their interfaces. This can help enhance the rapidly growing development of material properties based on the spatial and geometric properties of the electronic wave functions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用角度分辨光发射光谱探测晶体固体的万尼尔函数
角度分辨光发射光谱(ARPES)是量子材料研究中广泛采用的一种技术。光电效应的表面敏感性也使其成为研究表面和浅界面现象的有力工具。虽然其绝大多数应用都集中在提取动量空间中电子布洛赫态的特征能,但通过 ARPES 提取波函数信息的尝试还仅限于分子系统。从这个角度出发,建议并提倡使用 ARPES 研究和揭示晶体固体及其界面的波函数特性,而不仅仅是电子能量-动量色散关系。这有助于促进基于电子波函数的空间和几何特性的材料特性的快速发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
期刊最新文献
Effect of Mesa Sidewall Angle on 4H-Silicon Carbide Trench Filling Epitaxy Using Trichlorosilane and Hydrogen Chloride (Adv. Mater. Interfaces 33/2024) Masthead: (Adv. Mater. Interfaces 33/2024) Biphilic Functional Surfaces for Frost Prevention and Efficient Active Defrosting (Adv. Mater. Interfaces 32/2024) Masthead: (Adv. Mater. Interfaces 32/2024) Masthead: (Adv. Mater. Interfaces 31/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1