Mona H. Abdelrahman, Nikolaos Liaros, Matt J. Hourwitz, Jerry Shen, Sandra A. Gutierrez Razo, Wolfgang Losert, John T. Fourkas
{"title":"Large-Area Photomodification of Nanotopography for Controlling Cell Behavior","authors":"Mona H. Abdelrahman, Nikolaos Liaros, Matt J. Hourwitz, Jerry Shen, Sandra A. Gutierrez Razo, Wolfgang Losert, John T. Fourkas","doi":"10.1002/admi.202400244","DOIUrl":null,"url":null,"abstract":"<p>Nanotopographic surfaces are a powerful tool for studying and controlling cell behavior. However, the fabrication of nanotopographic master patterns using conventional photolithography is expensive, which limits the range of designs that can be explored. In this study, a method is demonstrated for the photoreshaping of large-area patterns of nanoridges. The original master pattern is created using conventional lithography, and an azopolymer replica is prepared using soft lithography. The manipulation of the nanoridges is achieved by projecting light with specific polarizations and exposure times, resulting in controllable widening, buckling, or removal of the ridges. The reprogrammed azopolymer master patterns can then be replicated, creating reproducible new nanotopographies that can be transferred into other materials using a molding procedure. Diffraction can be used for in situ monitoring of the reprogramming during exposure. Image-analysis methods are used to characterize buckled ridges as a function of exposure time. The response of MCF10A epithelial cells are investigated to buckled nanoridges. A substantial impact of buckling on the dynamics and location of actin polymerization, as well as on the distribution and lengths of contiguous polymerized regions is also observed.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 28","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400244","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400244","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanotopographic surfaces are a powerful tool for studying and controlling cell behavior. However, the fabrication of nanotopographic master patterns using conventional photolithography is expensive, which limits the range of designs that can be explored. In this study, a method is demonstrated for the photoreshaping of large-area patterns of nanoridges. The original master pattern is created using conventional lithography, and an azopolymer replica is prepared using soft lithography. The manipulation of the nanoridges is achieved by projecting light with specific polarizations and exposure times, resulting in controllable widening, buckling, or removal of the ridges. The reprogrammed azopolymer master patterns can then be replicated, creating reproducible new nanotopographies that can be transferred into other materials using a molding procedure. Diffraction can be used for in situ monitoring of the reprogramming during exposure. Image-analysis methods are used to characterize buckled ridges as a function of exposure time. The response of MCF10A epithelial cells are investigated to buckled nanoridges. A substantial impact of buckling on the dynamics and location of actin polymerization, as well as on the distribution and lengths of contiguous polymerized regions is also observed.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.