Reid Blanchett,Haitao Chen,Roza M Vlasova,Emil Cornea,Maria Maza,Marsha Davenport,Debra Reinhartsen,Margaret DeRamus,Rebecca Edmondson Pretzel,John H Gilmore,Stephen R Hooper,Martin A Styner,Wei Gao,Rebecca C Knickmeyer
{"title":"White matter microstructure and functional connectivity in the brains of infants with Turner syndrome.","authors":"Reid Blanchett,Haitao Chen,Roza M Vlasova,Emil Cornea,Maria Maza,Marsha Davenport,Debra Reinhartsen,Margaret DeRamus,Rebecca Edmondson Pretzel,John H Gilmore,Stephen R Hooper,Martin A Styner,Wei Gao,Rebecca C Knickmeyer","doi":"10.1093/cercor/bhae351","DOIUrl":null,"url":null,"abstract":"Turner syndrome, caused by complete or partial loss of an X-chromosome, is often accompanied by specific cognitive challenges. Magnetic resonance imaging studies of adults and children with Turner syndrome suggest these deficits reflect differences in anatomical and functional connectivity. However, no imaging studies have explored connectivity in infants with Turner syndrome. Consequently, it is unclear when in development connectivity differences emerge. To address this gap, we compared functional connectivity and white matter microstructure of 1-year-old infants with Turner syndrome to typically developing 1-year-old boys and girls. We examined functional connectivity between the right precentral gyrus and five regions that show reduced volume in 1-year old infants with Turner syndrome compared to controls and found no differences. However, exploratory analyses suggested infants with Turner syndrome have altered connectivity between right supramarginal gyrus and left insula and right putamen. To assess anatomical connectivity, we examined diffusivity indices along the superior longitudinal fasciculus and found no differences. However, an exploratory analysis of 46 additional white matter tracts revealed significant group differences in nine tracts. Results suggest that the first year of life is a window in which interventions might prevent connectivity differences observed at later ages, and by extension, some of the cognitive challenges associated with Turner syndrome.","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"8 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae351","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Turner syndrome, caused by complete or partial loss of an X-chromosome, is often accompanied by specific cognitive challenges. Magnetic resonance imaging studies of adults and children with Turner syndrome suggest these deficits reflect differences in anatomical and functional connectivity. However, no imaging studies have explored connectivity in infants with Turner syndrome. Consequently, it is unclear when in development connectivity differences emerge. To address this gap, we compared functional connectivity and white matter microstructure of 1-year-old infants with Turner syndrome to typically developing 1-year-old boys and girls. We examined functional connectivity between the right precentral gyrus and five regions that show reduced volume in 1-year old infants with Turner syndrome compared to controls and found no differences. However, exploratory analyses suggested infants with Turner syndrome have altered connectivity between right supramarginal gyrus and left insula and right putamen. To assess anatomical connectivity, we examined diffusivity indices along the superior longitudinal fasciculus and found no differences. However, an exploratory analysis of 46 additional white matter tracts revealed significant group differences in nine tracts. Results suggest that the first year of life is a window in which interventions might prevent connectivity differences observed at later ages, and by extension, some of the cognitive challenges associated with Turner syndrome.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.