Physicochemical, Sensory, and Microbiological Analysis of Fermented Drinks Made from White Kidney Bean Extract and Cow’s Milk Blends during Refrigerated Storage
{"title":"Physicochemical, Sensory, and Microbiological Analysis of Fermented Drinks Made from White Kidney Bean Extract and Cow’s Milk Blends during Refrigerated Storage","authors":"Ibaratkan Kurbanova, Lina Lauciene, Kristina Kondrotiene, Gintare Zakariene, Vitalijs Radenkovs, Sandra Kiselioviene, Alvija Salaseviciene, Agne Vasiliauskaite, Mindaugas Malakauskas, Mukarama Musulmanova, Loreta Serniene","doi":"10.3390/microorganisms12091832","DOIUrl":null,"url":null,"abstract":"Due to its low dietary impact and bioactive compounds, such as polyphenols and flavonoids, white kidney bean extract is an attractive raw material for fermented drinks. It can be utilized either on its own or blended with cow’s milk, offering a promising solution to help meet dairy product demand during mid-season shortages. Therefore, this study aimed to explore the physicochemical characteristics, sensory properties, and microbiological profile of fermented milk-like drinks made from white kidney bean extract, cow’s milk and their blends during 28 days of storage at 4 °C. Three blends of fermented milk-like drinks (FMLDs) were prepared from different ratios of cow’s milk (CM) and kidney bean extract (BE): FMLD1 (CM 30%:BE 70%); FMLD2 (CM 50%:BE 50%), FMLD3 (CM 70%:BE 30%), along with plain fermented kidney been extract (FBE; CM 0%:BE 100%), and plain fermented cow’s milk (FCM; CM 100%:BE 0%). The mixtures were pasteurized at 92 °C for 25 min and fermented with a probiotic-type starter culture (S. thermophilus, B. bifidum, L. acidophilus) at 43 °C. FBE exhibited the lowest levels of carbohydrates (2.14%), fat (0.11%), and protein (1.45%) compared to fermented cow’s milk and blends. The FBE and the fermented blends with a higher ratio of bean extract had lower viscosity and lactic acid contents, greener hue, more pronounced aftertaste and off-flavors, and received lower overall acceptability scores. Although the FCM had higher counts of S. thermophilus and L. acidophilus, the FBE displayed significantly higher counts of B. bifidum. This study demonstrated the potential of using white kidney bean extract and its blends with cow’s milk to create unique fermented products with a lower dietary impact, highlighting the importance of further optimizing the formulations to enhance sensory qualities and reduce the beany off-flavors in the products with added kidney bean extract.","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms12091832","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its low dietary impact and bioactive compounds, such as polyphenols and flavonoids, white kidney bean extract is an attractive raw material for fermented drinks. It can be utilized either on its own or blended with cow’s milk, offering a promising solution to help meet dairy product demand during mid-season shortages. Therefore, this study aimed to explore the physicochemical characteristics, sensory properties, and microbiological profile of fermented milk-like drinks made from white kidney bean extract, cow’s milk and their blends during 28 days of storage at 4 °C. Three blends of fermented milk-like drinks (FMLDs) were prepared from different ratios of cow’s milk (CM) and kidney bean extract (BE): FMLD1 (CM 30%:BE 70%); FMLD2 (CM 50%:BE 50%), FMLD3 (CM 70%:BE 30%), along with plain fermented kidney been extract (FBE; CM 0%:BE 100%), and plain fermented cow’s milk (FCM; CM 100%:BE 0%). The mixtures were pasteurized at 92 °C for 25 min and fermented with a probiotic-type starter culture (S. thermophilus, B. bifidum, L. acidophilus) at 43 °C. FBE exhibited the lowest levels of carbohydrates (2.14%), fat (0.11%), and protein (1.45%) compared to fermented cow’s milk and blends. The FBE and the fermented blends with a higher ratio of bean extract had lower viscosity and lactic acid contents, greener hue, more pronounced aftertaste and off-flavors, and received lower overall acceptability scores. Although the FCM had higher counts of S. thermophilus and L. acidophilus, the FBE displayed significantly higher counts of B. bifidum. This study demonstrated the potential of using white kidney bean extract and its blends with cow’s milk to create unique fermented products with a lower dietary impact, highlighting the importance of further optimizing the formulations to enhance sensory qualities and reduce the beany off-flavors in the products with added kidney bean extract.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.