Chen-Di Wei, Qiu-Ren Chen, Min Chen, Li Huang, Zhong-Jie Yue, Si-Geng Li, Jian Wang, Li Chen, Chao Tong, Qing Liu
{"title":"Predicting fatigue life of automotive adhesive bonded joints: a data-driven approach using combined experimental and numerical datasets","authors":"Chen-Di Wei, Qiu-Ren Chen, Min Chen, Li Huang, Zhong-Jie Yue, Si-Geng Li, Jian Wang, Li Chen, Chao Tong, Qing Liu","doi":"10.1007/s40436-024-00500-5","DOIUrl":null,"url":null,"abstract":"<div><p>The majority of vehicle structural failures originate from joint areas. Cyclic loading is one of the primary factors in joint failures, making the fatigue performance of joints a critical consideration in vehicle structure design. The use of traditional fatigue analysis methods is constrained by the absence of adhesive life data and the wide variety of joint geometries. Therefore, there is a pressing need for an accurate fatigue life estimation method for the joints in the automotive industry. In this work, we proposed a data-driven approach embedding physical knowledge-guided parameters based on experimental data and finite element analysis (FEA) results. Different machine learning (ML) algorithms are adopted to investigate the fatigue life of three typical adhesive joints, namely lap shear, coach peel and KSII joints. After the feature engineering and tuned process of the ML models, the preferable model using the Gaussian process regression algorithm is established, fed with eight input parameters, namely thicknesses of the substrates, line forces and bending moments of the adhesive bonded joints obtained from FEA. The proposed method is validated with the test data set and part-level physical tests with complex loading states for an unbiased evaluation. It demonstrates that for life prediction of adhesive joints, the data-driven solutions can constitute an improvement over conventional solutions.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"12 3","pages":"522 - 537"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-024-00500-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The majority of vehicle structural failures originate from joint areas. Cyclic loading is one of the primary factors in joint failures, making the fatigue performance of joints a critical consideration in vehicle structure design. The use of traditional fatigue analysis methods is constrained by the absence of adhesive life data and the wide variety of joint geometries. Therefore, there is a pressing need for an accurate fatigue life estimation method for the joints in the automotive industry. In this work, we proposed a data-driven approach embedding physical knowledge-guided parameters based on experimental data and finite element analysis (FEA) results. Different machine learning (ML) algorithms are adopted to investigate the fatigue life of three typical adhesive joints, namely lap shear, coach peel and KSII joints. After the feature engineering and tuned process of the ML models, the preferable model using the Gaussian process regression algorithm is established, fed with eight input parameters, namely thicknesses of the substrates, line forces and bending moments of the adhesive bonded joints obtained from FEA. The proposed method is validated with the test data set and part-level physical tests with complex loading states for an unbiased evaluation. It demonstrates that for life prediction of adhesive joints, the data-driven solutions can constitute an improvement over conventional solutions.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.