A unified framework for financial commentary prediction

Ozan Ozyegen, Garima Malik, Mucahit Cevik, Kevin Ioi, Karim El Mokhtari
{"title":"A unified framework for financial commentary prediction","authors":"Ozan Ozyegen, Garima Malik, Mucahit Cevik, Kevin Ioi, Karim El Mokhtari","doi":"10.1007/s10799-024-00439-w","DOIUrl":null,"url":null,"abstract":"<p>Companies generate operational reports to measure business performance and evaluate discrepancies between actual outcomes and forecasts. Analysts comment on these reports to explain the causes of deviations. In this paper, we propose a machine learning-based framework to predict the commentaries from the operational data generated by a company. We use time series classification to predict labels for the existing commentaries, and compare various machine learning models for the prediction task including XGBoost, long short term memory networks and fully convolutional networks (FCN). Classification models are trained on three datasets and their performance is evaluated in terms of accuracy and F1-score. We consider AI interpretability as an additional component in our framework to better explain the predictions to the decision makers. Our numerical study shows that FCN architecture provides higher classification performance, and Class Activation Maps and SHAP interpretability methods provide intuitive explanations for the model predictions. We find that the proposed framework that is enabled by machine learning-based methods offers new avenues to leverage management information systems for providing insights to the managers on key financial issues including sales forecasting and inventory management.</p>","PeriodicalId":13616,"journal":{"name":"Information Technology and Management","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10799-024-00439-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Companies generate operational reports to measure business performance and evaluate discrepancies between actual outcomes and forecasts. Analysts comment on these reports to explain the causes of deviations. In this paper, we propose a machine learning-based framework to predict the commentaries from the operational data generated by a company. We use time series classification to predict labels for the existing commentaries, and compare various machine learning models for the prediction task including XGBoost, long short term memory networks and fully convolutional networks (FCN). Classification models are trained on three datasets and their performance is evaluated in terms of accuracy and F1-score. We consider AI interpretability as an additional component in our framework to better explain the predictions to the decision makers. Our numerical study shows that FCN architecture provides higher classification performance, and Class Activation Maps and SHAP interpretability methods provide intuitive explanations for the model predictions. We find that the proposed framework that is enabled by machine learning-based methods offers new avenues to leverage management information systems for providing insights to the managers on key financial issues including sales forecasting and inventory management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
财务评论预测的统一框架
公司编制运营报告,以衡量业务绩效并评估实际结果与预测之间的差异。分析师会对这些报告进行评论,以解释偏差的原因。在本文中,我们提出了一个基于机器学习的框架,从公司生成的运营数据中预测评论。我们使用时间序列分类来预测现有评论的标签,并比较了用于预测任务的各种机器学习模型,包括 XGBoost、长短期记忆网络和全卷积网络 (FCN)。我们在三个数据集上对分类模型进行了训练,并根据准确率和 F1 分数对其性能进行了评估。我们将人工智能的可解释性视为我们框架中的一个额外组成部分,以便更好地向决策者解释预测结果。我们的数值研究表明,FCN 架构提供了更高的分类性能,而类激活图和 SHAP 可解释性方法则为模型预测提供了直观的解释。我们发现,基于机器学习方法的拟议框架为利用管理信息系统提供了新的途径,使管理人员能够深入了解包括销售预测和库存管理在内的关键财务问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring user motivations to proactive stickiness through pleasure-arousal-dominance model towards online games A unified framework for financial commentary prediction Disentangling the dynamic digital capability, digital transformation, and organizational performance relationships in SMEs: a configurational analysis based on fsQCA Unraveling trust management in cybersecurity: insights from a systematic literature review An empirical study of the relationship between pollution levels, firm characteristics, and innovation ability in China’s strategic emerging industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1