The electron shuttle of aloe-emodin promotes the Cu-FeOOH solid solution photocatalytic membrane to activate hydrogen peroxide for the degradation of tannic in traditional Chinese medicine wastewater
{"title":"The electron shuttle of aloe-emodin promotes the Cu-FeOOH solid solution photocatalytic membrane to activate hydrogen peroxide for the degradation of tannic in traditional Chinese medicine wastewater","authors":"Mengzhen Zhu, Jiajia Li, Manhua Chen, Yulu Liu, Qiong Mei, Hongbo Liu, Yuping Tang, Qizhao Wang","doi":"10.1016/j.apcatb.2024.124566","DOIUrl":null,"url":null,"abstract":"The inactive macromolecular substances would result in the membrane fouling and reduce the membrane flux in treating traditional Chinese medicine wastewater. Here, we report a novel photocatalytic membrane and utilize aloe-emodin (AE) as electron shuttle synergistically doped into Cu-FeOOH solid solution, then support the photocatalyst AE/Cu-FeOOH on PVDF membrane, which can effectively degrade tannic (95.69 %, 60 min). Furthermore, even after 6 hours of tannic solution filtration, the membrane maintains a high flux of 517 L m h bar. Combined with various spectral and photoelectric performance tests confirmed that AE/Cu-FeOOH-PVDF possesses high separation and transfer efficiency of photogenerated carriers. Meanwhile DFT calculation showed that the composite has better adsorption properties and HO activation ability. AE provided e to Cu-FeOOH, which accelerated the redox reaction process of Fe and Cu ions and produced more stable active free radicals to degrade tannic. This study provides a more environmentally friendly approach for utilizing photocatalytic membranes in the treatment of traditional Chinese medicine wastewater.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The inactive macromolecular substances would result in the membrane fouling and reduce the membrane flux in treating traditional Chinese medicine wastewater. Here, we report a novel photocatalytic membrane and utilize aloe-emodin (AE) as electron shuttle synergistically doped into Cu-FeOOH solid solution, then support the photocatalyst AE/Cu-FeOOH on PVDF membrane, which can effectively degrade tannic (95.69 %, 60 min). Furthermore, even after 6 hours of tannic solution filtration, the membrane maintains a high flux of 517 L m h bar. Combined with various spectral and photoelectric performance tests confirmed that AE/Cu-FeOOH-PVDF possesses high separation and transfer efficiency of photogenerated carriers. Meanwhile DFT calculation showed that the composite has better adsorption properties and HO activation ability. AE provided e to Cu-FeOOH, which accelerated the redox reaction process of Fe and Cu ions and produced more stable active free radicals to degrade tannic. This study provides a more environmentally friendly approach for utilizing photocatalytic membranes in the treatment of traditional Chinese medicine wastewater.
在处理中药废水时,非活性大分子物质会导致膜堵塞,降低膜通量。在此,我们报道了一种新型光催化膜,利用芦荟大黄素(AE)作为电子穿梭器协同掺杂到Cu-FeOOH固溶体中,然后将光催化剂AE/Cu-FeOOH支撑在PVDF膜上,可有效降解鞣酸(95.69%,60分钟)。此外,即使在单宁酸溶液过滤 6 小时后,膜仍能保持 517 L m h bar 的高通量。结合各种光谱和光电性能测试证实,AE/Cu-FeOOH-PVDF 具有很高的光生载流子分离和转移效率。同时,DFT 计算表明,该复合材料具有更好的吸附性能和 HO 活化能力。AE 为 Cu-FeOOH 提供了 e,从而加速了铁离子和铜离子的氧化还原反应过程,并产生了更稳定的活性自由基来降解单宁酸。这项研究为利用光催化膜处理中药废水提供了一种更环保的方法。