{"title":"Promoting metal oxides–zeolite electron interaction on MnCeOx/HY catalyst for boosting nitrogen oxides reduction","authors":"Yonglong Li, Guobo Li, Hao Li, Wenming Liu, Jian Ji, Shengyong Lu, Zhenguo Li, Honggen Peng","doi":"10.1016/j.apcatb.2024.124535","DOIUrl":null,"url":null,"abstract":"The MnO-CeO metal oxides are considered as promising alternative catalysts for selective catalytic reduction with NH (NH-SCR) to remove NO due to its excellent low temperature performance. However, their strong oxidative ability can lead to NH over-oxidation, narrowing the active temperature range and reducing N selectivity. Moreover, their weak surface acidity hampers medium to high-temperature activity and alkali metal resistance. Hence, in this study, MnCeO metal oxides were coupled with HY zeolite to create MnCeO/HY, demonstrating excellent NH-SCR performance. The high dispersion of metal oxides on the zeolite surface and their close integration promoted strong electron interaction, effectively reducing oxygen vacancies and surface adsorbed oxygen concentrations. Consequently, the oxidative ability of active metal oxides was appropriately weakened, suppressing undesirable side reactions. MnCeO/HY also notably suppressed NO adsorption and nitrate formation, promoting the catalytic reaction solely through the E-R mechanism and enhancing N selectivity. The abundant strong acid sites on the zeolite surface facilitates NH adsorption at moderate to high temperatures, notably expanding the active temperature window. Furthermore, the acid sites of HY zeolite serve as sacrificial sites, preferentially reacting with alkali metals, thus exhibiting excellent resistance to alkali metal poisoning on MnCeO/HY. Combining with the DFT results, the structure-activity relationships in this study also reveal the importance of the effective synergy between acid sites and redox sites for optimal catalytic performance, offering valuable insights into the development of highly active and alkali-resistant denitrification catalysts.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The MnO-CeO metal oxides are considered as promising alternative catalysts for selective catalytic reduction with NH (NH-SCR) to remove NO due to its excellent low temperature performance. However, their strong oxidative ability can lead to NH over-oxidation, narrowing the active temperature range and reducing N selectivity. Moreover, their weak surface acidity hampers medium to high-temperature activity and alkali metal resistance. Hence, in this study, MnCeO metal oxides were coupled with HY zeolite to create MnCeO/HY, demonstrating excellent NH-SCR performance. The high dispersion of metal oxides on the zeolite surface and their close integration promoted strong electron interaction, effectively reducing oxygen vacancies and surface adsorbed oxygen concentrations. Consequently, the oxidative ability of active metal oxides was appropriately weakened, suppressing undesirable side reactions. MnCeO/HY also notably suppressed NO adsorption and nitrate formation, promoting the catalytic reaction solely through the E-R mechanism and enhancing N selectivity. The abundant strong acid sites on the zeolite surface facilitates NH adsorption at moderate to high temperatures, notably expanding the active temperature window. Furthermore, the acid sites of HY zeolite serve as sacrificial sites, preferentially reacting with alkali metals, thus exhibiting excellent resistance to alkali metal poisoning on MnCeO/HY. Combining with the DFT results, the structure-activity relationships in this study also reveal the importance of the effective synergy between acid sites and redox sites for optimal catalytic performance, offering valuable insights into the development of highly active and alkali-resistant denitrification catalysts.