Enhancing Cross-Market Recommendation System with Graph Isomorphism Networks: A Novel Approach to Personalized User Experience

Sümeyye Öztürk, Ahmed Burak Ercan, Resul Tugay, Şule Gündüz Öğüdücü
{"title":"Enhancing Cross-Market Recommendation System with Graph Isomorphism Networks: A Novel Approach to Personalized User Experience","authors":"Sümeyye Öztürk, Ahmed Burak Ercan, Resul Tugay, Şule Gündüz Öğüdücü","doi":"arxiv-2409.07850","DOIUrl":null,"url":null,"abstract":"In today's world of globalized commerce, cross-market recommendation systems\n(CMRs) are crucial for providing personalized user experiences across diverse\nmarket segments. However, traditional recommendation algorithms have\ndifficulties dealing with market specificity and data sparsity, especially in\nnew or emerging markets. In this paper, we propose the CrossGR model, which\nutilizes Graph Isomorphism Networks (GINs) to improve CMR systems. It\noutperforms existing benchmarks in NDCG@10 and HR@10 metrics, demonstrating its\nadaptability and accuracy in handling diverse market segments. The CrossGR\nmodel is adaptable and accurate, making it well-suited for handling the\ncomplexities of cross-market recommendation tasks. Its robustness is\ndemonstrated by consistent performance across different evaluation timeframes,\nindicating its potential to cater to evolving market trends and user\npreferences. Our findings suggest that GINs represent a promising direction for\nCMRs, paving the way for more sophisticated, personalized, and context-aware\nrecommendation systems in the dynamic landscape of global e-commerce.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In today's world of globalized commerce, cross-market recommendation systems (CMRs) are crucial for providing personalized user experiences across diverse market segments. However, traditional recommendation algorithms have difficulties dealing with market specificity and data sparsity, especially in new or emerging markets. In this paper, we propose the CrossGR model, which utilizes Graph Isomorphism Networks (GINs) to improve CMR systems. It outperforms existing benchmarks in NDCG@10 and HR@10 metrics, demonstrating its adaptability and accuracy in handling diverse market segments. The CrossGR model is adaptable and accurate, making it well-suited for handling the complexities of cross-market recommendation tasks. Its robustness is demonstrated by consistent performance across different evaluation timeframes, indicating its potential to cater to evolving market trends and user preferences. Our findings suggest that GINs represent a promising direction for CMRs, paving the way for more sophisticated, personalized, and context-aware recommendation systems in the dynamic landscape of global e-commerce.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用图同构网络增强跨市场推荐系统:个性化用户体验的新方法
在商业全球化的今天,跨市场推荐系统(CMR)对于在不同细分市场提供个性化用户体验至关重要。然而,传统的推荐算法在处理市场特殊性和数据稀缺性方面存在困难,尤其是在新兴市场。在本文中,我们提出了 CrossGR 模型,该模型利用图形同构网络(GIN)来改进 CMR 系统。该模型在 NDCG@10 和 HR@10 指标方面优于现有基准,证明了它在处理不同细分市场方面的适应性和准确性。CrossGR 模型适应性强、准确度高,非常适合处理复杂的跨市场推荐任务。在不同的评估时间范围内,该模型的性能始终如一,这证明了它的稳健性,同时也表明它具有迎合不断变化的市场趋势和用户偏好的潜力。我们的研究结果表明,GINs 代表了 CMR 的一个有前途的发展方向,为在全球电子商务的动态环境中开发更复杂、更个性化和情境感知的推荐系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1