Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging

Yifan Sun, Rang Liu, Zhiping Lu, Honghao Luo, Ming Li, Qian Liu
{"title":"Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging","authors":"Yifan Sun, Rang Liu, Zhiping Lu, Honghao Luo, Ming Li, Qian Liu","doi":"arxiv-2409.11728","DOIUrl":null,"url":null,"abstract":"Synthetic Aperture Radar (SAR) utilizes the movement of the radar antenna\nover a specific area of interest to achieve higher spatial resolution imaging.\nIn this paper, we aim to investigate the realization of SAR imaging for a\nstationary radar system with the assistance of active reconfigurable\nintelligent surface (ARIS) mounted on an unmanned aerial vehicle (UAV). As the\nUAV moves along the stationary trajectory, the ARIS can not only build a\nhigh-quality virtual line-of-sight (LoS) propagation path, but its mobility can\nalso effectively create a much larger virtual aperture, which can be utilized\nto realize a SAR system. In this paper, we first present a range-Doppler (RD)\nimaging algorithm to obtain imaging results for the proposed ARIS-empowered SAR\nsystem. Then, to further improve the SAR imaging performance, we attempt to\noptimize the reflection coefficients of ARIS to maximize the signal-to-noise\nratio (SNR) at the stationary radar receiver under the constraints of ARIS\nmaximum power and amplification factor. An effective algorithm based on\nfractional programming (FP) and majorization minimization (MM) methods is\ndeveloped to solve the resulting non-convex problem. Simulation results\nvalidate the effectiveness of ARIS-assisted SAR imaging and our proposed RD\nimaging and ARIS optimization algorithms.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic Aperture Radar (SAR) utilizes the movement of the radar antenna over a specific area of interest to achieve higher spatial resolution imaging. In this paper, we aim to investigate the realization of SAR imaging for a stationary radar system with the assistance of active reconfigurable intelligent surface (ARIS) mounted on an unmanned aerial vehicle (UAV). As the UAV moves along the stationary trajectory, the ARIS can not only build a high-quality virtual line-of-sight (LoS) propagation path, but its mobility can also effectively create a much larger virtual aperture, which can be utilized to realize a SAR system. In this paper, we first present a range-Doppler (RD) imaging algorithm to obtain imaging results for the proposed ARIS-empowered SAR system. Then, to further improve the SAR imaging performance, we attempt to optimize the reflection coefficients of ARIS to maximize the signal-to-noise ratio (SNR) at the stationary radar receiver under the constraints of ARIS maximum power and amplification factor. An effective algorithm based on fractional programming (FP) and majorization minimization (MM) methods is developed to solve the resulting non-convex problem. Simulation results validate the effectiveness of ARIS-assisted SAR imaging and our proposed RD imaging and ARIS optimization algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动可重构智能表面增强型合成孔径雷达成像技术
合成孔径雷达(SAR)利用雷达天线在特定感兴趣区域的移动来实现更高的空间分辨率成像。在本文中,我们旨在研究在无人飞行器(UAV)上安装的主动可重构智能表面(ARIS)的辅助下实现静态雷达系统的 SAR 成像。当无人飞行器沿静止轨迹移动时,ARIS 不仅能建立高质量的虚拟视距(LoS)传播路径,而且其移动性还能有效地创建更大的虚拟孔径,从而利用该孔径实现合成孔径雷达系统。在本文中,我们首先介绍了一种测距-多普勒(RD)成像算法,以获得所提出的由 ARIS 驱动的合成孔径雷达系统的成像结果。然后,为了进一步提高合成孔径雷达成像性能,我们尝试优化 ARIS 的反射系数,以便在 ARIS 最大功率和放大系数的约束下最大化静止雷达接收器的信噪比(SNR)。基于分数编程(FP)和大化最小化(MM)方法开发了一种有效算法来解决由此产生的非凸问题。仿真结果验证了 ARIS 辅助合成孔径雷达成像以及我们提出的 RDimaging 和 ARIS 优化算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1