FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement

Liam Hebert, Marialena Kyriakidi, Hubert Pham, Krishna Sayana, James Pine, Sukhdeep Sodhi, Ambarish Jash
{"title":"FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement","authors":"Liam Hebert, Marialena Kyriakidi, Hubert Pham, Krishna Sayana, James Pine, Sukhdeep Sodhi, Ambarish Jash","doi":"arxiv-2409.11699","DOIUrl":null,"url":null,"abstract":"Hybrid recommender systems, combining item IDs and textual descriptions,\noffer potential for improved accuracy. However, previous work has largely\nfocused on smaller datasets and model architectures. This paper introduces\nFlare (Fusing Language models and collaborative Architectures for Recommender\nEnhancement), a novel hybrid recommender that integrates a language model (mT5)\nwith a collaborative filtering model (Bert4Rec) using a Perceiver network. This\narchitecture allows Flare to effectively combine collaborative and content\ninformation for enhanced recommendations. We conduct a two-stage evaluation, first assessing Flare's performance\nagainst established baselines on smaller datasets, where it demonstrates\ncompetitive accuracy. Subsequently, we evaluate Flare on a larger, more\nrealistic dataset with a significantly larger item vocabulary, introducing new\nbaselines for this setting. Finally, we showcase Flare's inherent ability to\nsupport critiquing, enabling users to provide feedback and refine\nrecommendations. We further leverage critiquing as an evaluation method to\nassess the model's language understanding and its transferability to the\nrecommendation task.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid recommender systems, combining item IDs and textual descriptions, offer potential for improved accuracy. However, previous work has largely focused on smaller datasets and model architectures. This paper introduces Flare (Fusing Language models and collaborative Architectures for Recommender Enhancement), a novel hybrid recommender that integrates a language model (mT5) with a collaborative filtering model (Bert4Rec) using a Perceiver network. This architecture allows Flare to effectively combine collaborative and content information for enhanced recommendations. We conduct a two-stage evaluation, first assessing Flare's performance against established baselines on smaller datasets, where it demonstrates competitive accuracy. Subsequently, we evaluate Flare on a larger, more realistic dataset with a significantly larger item vocabulary, introducing new baselines for this setting. Finally, we showcase Flare's inherent ability to support critiquing, enabling users to provide feedback and refine recommendations. We further leverage critiquing as an evaluation method to assess the model's language understanding and its transferability to the recommendation task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FLARE:融合语言模型和协作架构以增强推荐功能
混合推荐系统结合了项目 ID 和文本描述,具有提高准确性的潜力。然而,以前的工作主要集中在较小的数据集和模型架构上。本文介绍了一种新型混合推荐器 Flare(融合语言模型和协作架构用于增强推荐器功能),它利用 Perceiver 网络将语言模型(mT5)与协作过滤模型(Bert4Rec)集成在一起。这种架构使 Flare 能够有效地将协作信息和内容信息结合起来,从而增强推荐效果。我们分两个阶段进行评估,首先评估 Flare 在较小数据集上与既定基线相比的性能,Flare 在这些数据集上表现出了具有竞争力的准确性。随后,我们在一个更大、更现实的数据集上对 Flare 进行了评估,该数据集的项目词汇量要大得多,我们为此引入了新的基准。最后,我们展示了 Flare 支持评论的内在能力,使用户能够提供反馈并完善建议。我们进一步利用点评作为一种评估方法,来评估模型的语言理解能力及其在推荐任务中的可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1