Dot Product is All You Need: Bridging the Gap Between Item Recommendation and Link Prediction

Daniele Malitesta, Alberto Carlo Maria Mancino, Pasquale Minervini, Tommaso Di Noia
{"title":"Dot Product is All You Need: Bridging the Gap Between Item Recommendation and Link Prediction","authors":"Daniele Malitesta, Alberto Carlo Maria Mancino, Pasquale Minervini, Tommaso Di Noia","doi":"arxiv-2409.07433","DOIUrl":null,"url":null,"abstract":"Item recommendation (the task of predicting if a user may interact with new\nitems from the catalogue in a recommendation system) and link prediction (the\ntask of identifying missing links in a knowledge graph) have long been regarded\nas distinct problems. In this work, we show that the item recommendation\nproblem can be seen as an instance of the link prediction problem, where\nentities in the graph represent users and items, and the task consists of\npredicting missing instances of the relation type <<interactsWith>>. In a\npreliminary attempt to demonstrate the assumption, we decide to test three\npopular factorisation-based link prediction models on the item recommendation\ntask, showing that their predictive accuracy is competitive with ten\nstate-of-the-art recommendation models. The purpose is to show how the former\nmay be seamlessly and effectively applied to the recommendation task without\nany specific modification to their architectures. Finally, while beginning to\nunveil the key reasons behind the recommendation performance of the selected\nlink prediction models, we explore different settings for their hyper-parameter\nvalues, paving the way for future directions.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Item recommendation (the task of predicting if a user may interact with new items from the catalogue in a recommendation system) and link prediction (the task of identifying missing links in a knowledge graph) have long been regarded as distinct problems. In this work, we show that the item recommendation problem can be seen as an instance of the link prediction problem, where entities in the graph represent users and items, and the task consists of predicting missing instances of the relation type <>. In a preliminary attempt to demonstrate the assumption, we decide to test three popular factorisation-based link prediction models on the item recommendation task, showing that their predictive accuracy is competitive with ten state-of-the-art recommendation models. The purpose is to show how the former may be seamlessly and effectively applied to the recommendation task without any specific modification to their architectures. Finally, while beginning to unveil the key reasons behind the recommendation performance of the selected link prediction models, we explore different settings for their hyper-parameter values, paving the way for future directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
点产品就是你所需要的一切:缩小项目推荐与链接预测之间的差距
长期以来,项目推荐(预测用户是否可能与推荐系统目录中的新项目进行交互的任务)和链接预测(识别知识图谱中缺失的链接的任务)一直被视为不同的问题。在这项工作中,我们证明了物品推荐问题可以看作是链接预测问题的一个实例,图中的实体代表用户和物品,任务包括预测关系类型 > 的缺失实例。为了初步证明这一假设,我们决定在物品推荐任务中测试三种流行的基于因子化的链接预测模型,结果表明它们的预测准确率与十种最先进的推荐模型相比具有竞争力。这样做的目的是展示如何在不对其架构进行任何特定修改的情况下,将前者无缝、有效地应用到推荐任务中。最后,在开始揭示所选链接预测模型的推荐性能背后的关键原因的同时,我们探索了它们的超参数值的不同设置,为未来的发展方向铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1