RegNLP in Action: Facilitating Compliance Through Automated Information Retrieval and Answer Generation

Tuba Gokhan, Kexin Wang, Iryna Gurevych, Ted Briscoe
{"title":"RegNLP in Action: Facilitating Compliance Through Automated Information Retrieval and Answer Generation","authors":"Tuba Gokhan, Kexin Wang, Iryna Gurevych, Ted Briscoe","doi":"arxiv-2409.05677","DOIUrl":null,"url":null,"abstract":"Regulatory documents, issued by governmental regulatory bodies, establish\nrules, guidelines, and standards that organizations must adhere to for legal\ncompliance. These documents, characterized by their length, complexity and\nfrequent updates, are challenging to interpret, requiring significant\nallocation of time and expertise on the part of organizations to ensure ongoing\ncompliance.Regulatory Natural Language Processing (RegNLP) is a\nmultidisciplinary subfield aimed at simplifying access to and interpretation of\nregulatory rules and obligations. We define an Automated Question-Passage\nGeneration task for RegNLP, create the ObliQA dataset containing 27,869\nquestions derived from the Abu Dhabi Global Markets (ADGM) financial regulation\ndocument collection, design a baseline Regulatory Information Retrieval and\nAnswer Generation system, and evaluate it with RePASs, a novel evaluation\nmetric that tests whether generated answers accurately capture all relevant\nobligations and avoid contradictions.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regulatory documents, issued by governmental regulatory bodies, establish rules, guidelines, and standards that organizations must adhere to for legal compliance. These documents, characterized by their length, complexity and frequent updates, are challenging to interpret, requiring significant allocation of time and expertise on the part of organizations to ensure ongoing compliance.Regulatory Natural Language Processing (RegNLP) is a multidisciplinary subfield aimed at simplifying access to and interpretation of regulatory rules and obligations. We define an Automated Question-Passage Generation task for RegNLP, create the ObliQA dataset containing 27,869 questions derived from the Abu Dhabi Global Markets (ADGM) financial regulation document collection, design a baseline Regulatory Information Retrieval and Answer Generation system, and evaluate it with RePASs, a novel evaluation metric that tests whether generated answers accurately capture all relevant obligations and avoid contradictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RegNLP 在行动:通过自动信息检索和答案生成促进合规性
政府监管机构发布的监管文件制定了组织必须遵守的规则、指南和标准,以确保其符合法律规定。监管自然语言处理(RegNLP)是一个多学科子领域,旨在简化监管规则和义务的获取和解释。我们定义了 RegNLP 的自动问题生成任务,创建了包含 27,869 个问题的 ObliQA 数据集,这些问题来自阿布扎比全球市场(ADGM)金融监管文件集,设计了一个基线监管信息检索和答案生成系统,并用 RePASs 对其进行了评估,RePASs 是一种新颖的评估指标,用于测试生成的答案是否准确捕捉到所有相关义务并避免矛盾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1