Late Chunking: Contextual Chunk Embeddings Using Long-Context Embedding Models

Michael Günther, Isabelle Mohr, Bo Wang, Han Xiao
{"title":"Late Chunking: Contextual Chunk Embeddings Using Long-Context Embedding Models","authors":"Michael Günther, Isabelle Mohr, Bo Wang, Han Xiao","doi":"arxiv-2409.04701","DOIUrl":null,"url":null,"abstract":"Many use cases require retrieving smaller portions of text, and dense\nvector-based retrieval systems often perform better with shorter text segments,\nas the semantics are less likely to be \"over-compressed\" in the embeddings.\nConsequently, practitioners often split text documents into smaller chunks and\nencode them separately. However, chunk embeddings created in this way can lose\ncontextual information from surrounding chunks, resulting in suboptimal\nrepresentations. In this paper, we introduce a novel method called \"late\nchunking,\" which leverages long context embedding models to first embed all\ntokens of the long text, with chunking applied after the transformer model and\njust before mean pooling. The resulting chunk embeddings capture the full\ncontextual information, leading to superior results across various retrieval\ntasks without the need for additional training. Moreover, our method is generic\nenough to be applied to any long-context embedding model.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many use cases require retrieving smaller portions of text, and dense vector-based retrieval systems often perform better with shorter text segments, as the semantics are less likely to be "over-compressed" in the embeddings. Consequently, practitioners often split text documents into smaller chunks and encode them separately. However, chunk embeddings created in this way can lose contextual information from surrounding chunks, resulting in suboptimal representations. In this paper, we introduce a novel method called "late chunking," which leverages long context embedding models to first embed all tokens of the long text, with chunking applied after the transformer model and just before mean pooling. The resulting chunk embeddings capture the full contextual information, leading to superior results across various retrieval tasks without the need for additional training. Moreover, our method is generic enough to be applied to any long-context embedding model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晚期分块:使用长语境嵌入模型进行语境分块嵌入
许多用例需要检索文本的较小部分,而基于密集向量的检索系统通常在检索较短的文本片段时表现更好,因为语义不太可能在嵌入中被 "过度压缩"。然而,以这种方式创建的块嵌入可能会丢失周围块的上下文信息,从而导致次优表达。在本文中,我们介绍了一种名为 "晚分块 "的新方法,它利用长上下文嵌入模型首先嵌入长文本的所有标记,在转换器模型之后和均值池之前应用分块。由此产生的分块嵌入可以捕捉到完整的上下文信息,从而在各种检索任务中取得优异的结果,而无需额外的训练。此外,我们的方法具有通用性,可以应用于任何长文本嵌入模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1