Sequential Recommendation via Adaptive Robust Attention with Multi-dimensional Embeddings

Linsey Pang, Amir Hossein Raffiee, Wei Liu, Keld Lundgaard
{"title":"Sequential Recommendation via Adaptive Robust Attention with Multi-dimensional Embeddings","authors":"Linsey Pang, Amir Hossein Raffiee, Wei Liu, Keld Lundgaard","doi":"arxiv-2409.05022","DOIUrl":null,"url":null,"abstract":"Sequential recommendation models have achieved state-of-the-art performance\nusing self-attention mechanism. It has since been found that moving beyond only\nusing item ID and positional embeddings leads to a significant accuracy boost\nwhen predicting the next item. In recent literature, it was reported that a\nmulti-dimensional kernel embedding with temporal contextual kernels to capture\nusers' diverse behavioral patterns results in a substantial performance\nimprovement. In this study, we further improve the sequential recommender\nmodel's robustness and generalization by introducing a mix-attention mechanism\nwith a layer-wise noise injection (LNI) regularization. We refer to our\nproposed model as adaptive robust sequential recommendation framework (ADRRec),\nand demonstrate through extensive experiments that our model outperforms\nexisting self-attention architectures.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sequential recommendation models have achieved state-of-the-art performance using self-attention mechanism. It has since been found that moving beyond only using item ID and positional embeddings leads to a significant accuracy boost when predicting the next item. In recent literature, it was reported that a multi-dimensional kernel embedding with temporal contextual kernels to capture users' diverse behavioral patterns results in a substantial performance improvement. In this study, we further improve the sequential recommender model's robustness and generalization by introducing a mix-attention mechanism with a layer-wise noise injection (LNI) regularization. We refer to our proposed model as adaptive robust sequential recommendation framework (ADRRec), and demonstrate through extensive experiments that our model outperforms existing self-attention architectures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多维嵌入式自适应鲁棒注意进行序列推荐
顺序推荐模型利用自我关注机制实现了最先进的性能。后来人们发现,除了使用项目 ID 和位置嵌入之外,在预测下一个项目时还能显著提高准确率。在最近的文献中,有报道称多维内核嵌入与时间上下文内核相结合可以捕捉用户的不同行为模式,从而大幅提高性能。在本研究中,我们通过引入混合注意力机制和层向噪声注入(LNI)正则化,进一步提高了顺序推荐模型的鲁棒性和泛化能力。我们将提出的模型称为自适应鲁棒顺序推荐框架(ADRRec),并通过大量实验证明我们的模型优于现有的自我关注架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1