MOBIUS: Towards the Next Generation of Query-Ad Matching in Baidu's Sponsored Search

Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Mingming Sun, Ping Li
{"title":"MOBIUS: Towards the Next Generation of Query-Ad Matching in Baidu's Sponsored Search","authors":"Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Mingming Sun, Ping Li","doi":"arxiv-2409.03449","DOIUrl":null,"url":null,"abstract":"Baidu runs the largest commercial web search engine in China, serving\nhundreds of millions of online users every day in response to a great variety\nof queries. In order to build a high-efficiency sponsored search engine, we\nused to adopt a three-layer funnel-shaped structure to screen and sort hundreds\nof ads from billions of ad candidates subject to the requirement of low\nresponse latency and the restraints of computing resources. Given a user query,\nthe top matching layer is responsible for providing semantically relevant ad\ncandidates to the next layer, while the ranking layer at the bottom concerns\nmore about business indicators (e.g., CPM, ROI, etc.) of those ads. The clear\nseparation between the matching and ranking objectives results in a lower\ncommercial return. The Mobius project has been established to address this\nserious issue. It is our first attempt to train the matching layer to consider\nCPM as an additional optimization objective besides the query-ad relevance, via\ndirectly predicting CTR (click-through rate) from billions of query-ad pairs.\nSpecifically, this paper will elaborate on how we adopt active learning to\novercome the insufficiency of click history at the matching layer when training\nour neural click networks offline, and how we use the SOTA ANN search technique\nfor retrieving ads more efficiently (Here ``ANN'' stands for approximate\nnearest neighbor search). We contribute the solutions to Mobius-V1 as the first\nversion of our next generation query-ad matching system.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Baidu runs the largest commercial web search engine in China, serving hundreds of millions of online users every day in response to a great variety of queries. In order to build a high-efficiency sponsored search engine, we used to adopt a three-layer funnel-shaped structure to screen and sort hundreds of ads from billions of ad candidates subject to the requirement of low response latency and the restraints of computing resources. Given a user query, the top matching layer is responsible for providing semantically relevant ad candidates to the next layer, while the ranking layer at the bottom concerns more about business indicators (e.g., CPM, ROI, etc.) of those ads. The clear separation between the matching and ranking objectives results in a lower commercial return. The Mobius project has been established to address this serious issue. It is our first attempt to train the matching layer to consider CPM as an additional optimization objective besides the query-ad relevance, via directly predicting CTR (click-through rate) from billions of query-ad pairs. Specifically, this paper will elaborate on how we adopt active learning to overcome the insufficiency of click history at the matching layer when training our neural click networks offline, and how we use the SOTA ANN search technique for retrieving ads more efficiently (Here ``ANN'' stands for approximate nearest neighbor search). We contribute the solutions to Mobius-V1 as the first version of our next generation query-ad matching system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOBIUS:在百度赞助商搜索中实现下一代查询-广告匹配
百度是中国最大的商业网络搜索引擎,每天为数以亿计的在线用户提供各种查询服务。为了构建一个高效的赞助商搜索引擎,我们采用了一种三层漏斗状结构,在低响应延迟的要求和计算资源的限制下,从数十亿个候选广告中筛选和排序出数百个广告。给定用户查询后,顶部的匹配层负责向下一层提供语义相关的候选广告,而底部的排序层则更多地关注这些广告的商业指标(如 CPM、ROI 等)。匹配目标和排名目标的明显分离导致了较低的商业回报。Mobius 项目就是为了解决这一严重问题而设立的。具体来说,本文将阐述我们如何采用主动学习来克服匹配层在离线训练神经点击网络时点击历史记录不足的问题,以及我们如何使用 SOTA ANN 搜索技术来更高效地检索广告(这里的 "ANN "代表近邻搜索)。我们将这些解决方案贡献给 Mobius-V1,作为下一代查询-广告匹配系统的第一个版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1