iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models

Yassir Lairgi, Ludovic Moncla, Rémy Cazabet, Khalid Benabdeslem, Pierre Cléau
{"title":"iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models","authors":"Yassir Lairgi, Ludovic Moncla, Rémy Cazabet, Khalid Benabdeslem, Pierre Cléau","doi":"arxiv-2409.03284","DOIUrl":null,"url":null,"abstract":"Most available data is unstructured, making it challenging to access valuable\ninformation. Automatically building Knowledge Graphs (KGs) is crucial for\nstructuring data and making it accessible, allowing users to search for\ninformation effectively. KGs also facilitate insights, inference, and\nreasoning. Traditional NLP methods, such as named entity recognition and\nrelation extraction, are key in information retrieval but face limitations,\nincluding the use of predefined entity types and the need for supervised\nlearning. Current research leverages large language models' capabilities, such\nas zero- or few-shot learning. However, unresolved and semantically duplicated\nentities and relations still pose challenges, leading to inconsistent graphs\nand requiring extensive post-processing. Additionally, most approaches are\ntopic-dependent. In this paper, we propose iText2KG, a method for incremental,\ntopic-independent KG construction without post-processing. This plug-and-play,\nzero-shot method is applicable across a wide range of KG construction scenarios\nand comprises four modules: Document Distiller, Incremental Entity Extractor,\nIncremental Relation Extractor, and Graph Integrator and Visualization. Our\nmethod demonstrates superior performance compared to baseline methods across\nthree scenarios: converting scientific papers to graphs, websites to graphs,\nand CVs to graphs.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most available data is unstructured, making it challenging to access valuable information. Automatically building Knowledge Graphs (KGs) is crucial for structuring data and making it accessible, allowing users to search for information effectively. KGs also facilitate insights, inference, and reasoning. Traditional NLP methods, such as named entity recognition and relation extraction, are key in information retrieval but face limitations, including the use of predefined entity types and the need for supervised learning. Current research leverages large language models' capabilities, such as zero- or few-shot learning. However, unresolved and semantically duplicated entities and relations still pose challenges, leading to inconsistent graphs and requiring extensive post-processing. Additionally, most approaches are topic-dependent. In this paper, we propose iText2KG, a method for incremental, topic-independent KG construction without post-processing. This plug-and-play, zero-shot method is applicable across a wide range of KG construction scenarios and comprises four modules: Document Distiller, Incremental Entity Extractor, Incremental Relation Extractor, and Graph Integrator and Visualization. Our method demonstrates superior performance compared to baseline methods across three scenarios: converting scientific papers to graphs, websites to graphs, and CVs to graphs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
iText2KG:利用大型语言模型构建增量知识图谱
大多数可用数据都是非结构化的,因此获取有价值的信息具有挑战性。自动构建知识图谱(KG)对于构建数据并使其易于访问、让用户有效搜索信息至关重要。知识图谱还有助于洞察、推理和推理。传统的 NLP 方法(如命名实体识别和关联提取)是信息检索的关键,但也存在局限性,包括使用预定义的实体类型和需要监督学习。目前的研究利用了大型语言模型的能力,如零学习或少量学习。然而,未解决的和语义重复的实体和关系仍然构成挑战,导致图不一致,需要大量的后处理。此外,大多数方法都依赖于主题。在本文中,我们提出了 iText2KG,这是一种无需后处理的增量、与主题无关的 KG 构建方法。这种即插即用、零误差的方法适用于各种 KG 构建场景,由四个模块组成:它包括四个模块:文档蒸馏器、增量实体提取器、增量关系提取器以及图集成器和可视化。与基线方法相比,我们的方法在将科学论文转换为图形、将网站转换为图形以及将简历转换为图形这三种场景中都表现出了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1