A Survey on Knowledge Organization Systems of Research Fields: Resources and Challenges

Angelo Salatino, Tanay Aggarwal, Andrea Mannocci, Francesco Osborne, Enrico Motta
{"title":"A Survey on Knowledge Organization Systems of Research Fields: Resources and Challenges","authors":"Angelo Salatino, Tanay Aggarwal, Andrea Mannocci, Francesco Osborne, Enrico Motta","doi":"arxiv-2409.04432","DOIUrl":null,"url":null,"abstract":"Knowledge Organization Systems (KOSs), such as term lists, thesauri,\ntaxonomies, and ontologies, play a fundamental role in categorising, managing,\nand retrieving information. In the academic domain, KOSs are often adopted for\nrepresenting research areas and their relationships, primarily aiming to\nclassify research articles, academic courses, patents, books, scientific\nvenues, domain experts, grants, software, experiment materials, and several\nother relevant products and agents. These structured representations of\nresearch areas, widely embraced by many academic fields, have proven effective\nin empowering AI-based systems to i) enhance retrievability of relevant\ndocuments, ii) enable advanced analytic solutions to quantify the impact of\nacademic research, and iii) analyse and forecast research dynamics. This paper\naims to present a comprehensive survey of the current KOS for academic\ndisciplines. We analysed and compared 45 KOSs according to five main\ndimensions: scope, structure, curation, usage, and links to other KOSs. Our\nresults reveal a very heterogeneous scenario in terms of scope, scale, quality,\nand usage, highlighting the need for more integrated solutions for representing\nresearch knowledge across academic fields. We conclude by discussing the main\nchallenges and the most promising future directions.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge Organization Systems (KOSs), such as term lists, thesauri, taxonomies, and ontologies, play a fundamental role in categorising, managing, and retrieving information. In the academic domain, KOSs are often adopted for representing research areas and their relationships, primarily aiming to classify research articles, academic courses, patents, books, scientific venues, domain experts, grants, software, experiment materials, and several other relevant products and agents. These structured representations of research areas, widely embraced by many academic fields, have proven effective in empowering AI-based systems to i) enhance retrievability of relevant documents, ii) enable advanced analytic solutions to quantify the impact of academic research, and iii) analyse and forecast research dynamics. This paper aims to present a comprehensive survey of the current KOS for academic disciplines. We analysed and compared 45 KOSs according to five main dimensions: scope, structure, curation, usage, and links to other KOSs. Our results reveal a very heterogeneous scenario in terms of scope, scale, quality, and usage, highlighting the need for more integrated solutions for representing research knowledge across academic fields. We conclude by discussing the main challenges and the most promising future directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究领域知识组织系统调查:资源与挑战
知识组织系统(KOS),如术语表、词库、分类法和本体等,在信息分类、管理和检索方面发挥着重要作用。在学术领域,KOS 通常用于表示研究领域及其关系,主要目的是对研究文章、学术课程、专利、书籍、科学文献、领域专家、基金、软件、实验材料以及其他相关产品和代理进行分类。这些研究领域的结构化表征已被许多学术领域广泛接受,事实证明它们能有效地增强基于人工智能的系统的能力,从而:i) 提高相关文件的可检索性;ii) 实现先进的分析解决方案,量化学术研究的影响;iii) 分析和预测研究动态。本文旨在对当前的学科知识管理系统进行全面调查。我们从五个主要方面对 45 个 KOS 进行了分析和比较:范围、结构、策划、使用和与其他 KOS 的联系。我们的研究结果表明,在范围、规模、质量和使用方面,存在着非常不同的情况,这突出表明需要更多的综合解决方案来代表各学术领域的研究知识。最后,我们讨论了主要挑战和最有前途的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1