{"title":"Accumulation of airborne microplastics and its impact on pollution tolerance ability of plants in an urban setup in India","authors":"Chandan Sahu, Pratik Kumar Dash, Sradhanjali Basti","doi":"10.1007/s11869-024-01639-7","DOIUrl":null,"url":null,"abstract":"<div><p>Airborne microplastics (MP) are a recently hyped but unexplored area of research leading to some unanswered questions concerning its impact on vegetation. Work was conducted to evaluate the MP accumulating potential and its impact on the biochemical parameters of plants in an urban area (Sambalpur) in India. Four forms of MPs (viz. fiber, fragment, film, and bead) deposited on the leaf surface were analyzed through fluorescence microscopy using the Nile red dye method. Biochemical parameters (ascorbic acid (AA), leaf extract pH (P), total chlorophyll (TC), and relative water content (RWC)) and air pollution tolerance index (APTI) were also determined through standard protocol. The result found the dominance of beads with other MPs in the order: bead (44.7%) > film (27.7%) > fragment (20.7%) > fiber (6.9%) displaying significant spatial and species variation (<i>p</i> < 0.05). Spatially, the MP accumulation on leaf surface followed an order: residence (4.8 count/cm<sup>2</sup>) > sensitive (4.6 count/cm<sup>2</sup>) > urban biotope (4.3 count/cm<sup>2</sup>) > industry (3.3 count/cm<sup>2</sup>) > traffic (2.2 count/cm<sup>2</sup>). Species-wise <i>Ficus benghalensis</i>, <i>Polyalthia longifolia</i>, and <i>Mangifera indica</i> performed reasonably well concerning the MP accumulation while exhibiting good APTI scores. The RWC and leaf extract pH were the most influential factors regulating the MP accumulation. The former was chiefly responsible for dictating the tolerance ability of plants which is corroborated by the principal component and cluster analyses. Thus, it can be ascertained that the plant species offer distinct specificity in MP accumulation which is largely influenced by spatial variations, relative water content, and APTI value of plants.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"18 1","pages":"225 - 237"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01639-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Airborne microplastics (MP) are a recently hyped but unexplored area of research leading to some unanswered questions concerning its impact on vegetation. Work was conducted to evaluate the MP accumulating potential and its impact on the biochemical parameters of plants in an urban area (Sambalpur) in India. Four forms of MPs (viz. fiber, fragment, film, and bead) deposited on the leaf surface were analyzed through fluorescence microscopy using the Nile red dye method. Biochemical parameters (ascorbic acid (AA), leaf extract pH (P), total chlorophyll (TC), and relative water content (RWC)) and air pollution tolerance index (APTI) were also determined through standard protocol. The result found the dominance of beads with other MPs in the order: bead (44.7%) > film (27.7%) > fragment (20.7%) > fiber (6.9%) displaying significant spatial and species variation (p < 0.05). Spatially, the MP accumulation on leaf surface followed an order: residence (4.8 count/cm2) > sensitive (4.6 count/cm2) > urban biotope (4.3 count/cm2) > industry (3.3 count/cm2) > traffic (2.2 count/cm2). Species-wise Ficus benghalensis, Polyalthia longifolia, and Mangifera indica performed reasonably well concerning the MP accumulation while exhibiting good APTI scores. The RWC and leaf extract pH were the most influential factors regulating the MP accumulation. The former was chiefly responsible for dictating the tolerance ability of plants which is corroborated by the principal component and cluster analyses. Thus, it can be ascertained that the plant species offer distinct specificity in MP accumulation which is largely influenced by spatial variations, relative water content, and APTI value of plants.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.