Time and frequency-based effect of energy-related R&D investments on power sector CO2 emissions: evidence from leading R&D investing countries by WLMC approach
Mustafa Tevfik Kartal, Dilvin Taşkın, Ahmed Imran Hunjra
{"title":"Time and frequency-based effect of energy-related R&D investments on power sector CO2 emissions: evidence from leading R&D investing countries by WLMC approach","authors":"Mustafa Tevfik Kartal, Dilvin Taşkın, Ahmed Imran Hunjra","doi":"10.1007/s11869-024-01641-z","DOIUrl":null,"url":null,"abstract":"<p>Environmental pollution has become highly important for countries and societies because climate change and global warming are stimulated by increasing carbon dioxide (CO<sub>2</sub>) emissions. Hence, all related parties have been searching for solutions. Considering the high role of energy use in causing CO<sub>2</sub> emissions, energy-related research and development (R&D) investments are considered a strategic tool to curb the emissions. Accordingly, the study analyzes the effect of energy-related R&D investments on power sector CO<sub>2</sub> emissions. In doing so, the study examines leading R&D investing countries (namely, Canada-CAN; Switzerland-CHE; Germany-DEU; France-FRA; Japan-JPN; Norway-NOR; United States-USA), considering three R&D investment sub-types (i.e., energy efficiency R&D investments-EEF; renewable energy R&D investments-RRD; nuclear energy R&D investments-NRD), uses data from 1985/Q1 to 2022/Q4, and performs Wavelet Local Multiple Correlation (WLMC) approach to analyze over times and frequencies. The results show that (i) the effects of R&D investments are weak (strong) at lower (higher) frequencies; (ii) the effects of R&D investments vary based on times, frequencies, and countries; (iii) the most dominant R&D type is EEF (CHE, DEU, FRA, & JPN), RRD (CAN & NOR), and NRD (USA); (iv) there is an important externality among R&D types. Thus, the findings reveal the time, frequency, and country-based varying effect of R&D investments on power sector CO<sub>2</sub> emissions implying a need for comprehensively balanced planning for R&D investments. Hence, the countries should take the highly effective R&D investment types in combating power sector CO<sub>2</sub> emissions, allocate further budget to the effective ones, and re-consider the budget distribution among the R&D types.</p>","PeriodicalId":7458,"journal":{"name":"Air Quality, Atmosphere & Health","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality, Atmosphere & Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11869-024-01641-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental pollution has become highly important for countries and societies because climate change and global warming are stimulated by increasing carbon dioxide (CO2) emissions. Hence, all related parties have been searching for solutions. Considering the high role of energy use in causing CO2 emissions, energy-related research and development (R&D) investments are considered a strategic tool to curb the emissions. Accordingly, the study analyzes the effect of energy-related R&D investments on power sector CO2 emissions. In doing so, the study examines leading R&D investing countries (namely, Canada-CAN; Switzerland-CHE; Germany-DEU; France-FRA; Japan-JPN; Norway-NOR; United States-USA), considering three R&D investment sub-types (i.e., energy efficiency R&D investments-EEF; renewable energy R&D investments-RRD; nuclear energy R&D investments-NRD), uses data from 1985/Q1 to 2022/Q4, and performs Wavelet Local Multiple Correlation (WLMC) approach to analyze over times and frequencies. The results show that (i) the effects of R&D investments are weak (strong) at lower (higher) frequencies; (ii) the effects of R&D investments vary based on times, frequencies, and countries; (iii) the most dominant R&D type is EEF (CHE, DEU, FRA, & JPN), RRD (CAN & NOR), and NRD (USA); (iv) there is an important externality among R&D types. Thus, the findings reveal the time, frequency, and country-based varying effect of R&D investments on power sector CO2 emissions implying a need for comprehensively balanced planning for R&D investments. Hence, the countries should take the highly effective R&D investment types in combating power sector CO2 emissions, allocate further budget to the effective ones, and re-consider the budget distribution among the R&D types.