A Comprehensive Review on the Impact of Reinforced Nanoparticles in Friction Stir Welded Aluminium Alloys: An Analysis of Process Parameters and Mechanical Properties
{"title":"A Comprehensive Review on the Impact of Reinforced Nanoparticles in Friction Stir Welded Aluminium Alloys: An Analysis of Process Parameters and Mechanical Properties","authors":"Shailesh Kumar Pandey, S. K. Tiwari, D. K. Shukla","doi":"10.1007/s12666-024-03441-6","DOIUrl":null,"url":null,"abstract":"<p>Aluminum and its diverse alloys are widely utilized in numerous structural applications owing to their distinct characteristics. Furthermore, the mechanical properties of aluminum alloys can be enhanced further through their utilization in the fabrication of metal matrix composites (MMCs). In contemporary times, friction stir processing (FSP) is increasingly employed as a surface modification technique. FSP enhances the surface properties of materials by subjecting them to severe plastic deformation, mixing, and fragmentation of the base material through the spinning action of a rotating tool, coupled with the heat generated by friction. This paper provides a thorough examination of the research conducted in the realm of friction stir welding (FSW) and friction stir processing involving the aluminium alloys with nanoparticles reinforcement and also the strategies involved during reinforcement. It scrutinizes the effects of reinforced nanoparticles on processing parameters, explores the formation of microstructures, and assesses the resulting mechanical properties.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03441-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminum and its diverse alloys are widely utilized in numerous structural applications owing to their distinct characteristics. Furthermore, the mechanical properties of aluminum alloys can be enhanced further through their utilization in the fabrication of metal matrix composites (MMCs). In contemporary times, friction stir processing (FSP) is increasingly employed as a surface modification technique. FSP enhances the surface properties of materials by subjecting them to severe plastic deformation, mixing, and fragmentation of the base material through the spinning action of a rotating tool, coupled with the heat generated by friction. This paper provides a thorough examination of the research conducted in the realm of friction stir welding (FSW) and friction stir processing involving the aluminium alloys with nanoparticles reinforcement and also the strategies involved during reinforcement. It scrutinizes the effects of reinforced nanoparticles on processing parameters, explores the formation of microstructures, and assesses the resulting mechanical properties.
期刊介绍:
Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering.
Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.