Synergistic Effect of Fe-Amorphous and Bionic Microtexture in Enhancing High-Temperature Tribological Properties of Al-12Si Piston Materials

IF 1.6 4区 材料科学 Q2 Materials Science Transactions of The Indian Institute of Metals Pub Date : 2024-09-05 DOI:10.1007/s12666-024-03455-0
Yingdong Wang, Zuxiang lin, Chengbin Yin, Detong Kong, Deyong Zhao, Zhijun Wang, Beibei Ma, Zehua Xu, Yuan Wang
{"title":"Synergistic Effect of Fe-Amorphous and Bionic Microtexture in Enhancing High-Temperature Tribological Properties of Al-12Si Piston Materials","authors":"Yingdong Wang, Zuxiang lin, Chengbin Yin, Detong Kong, Deyong Zhao, Zhijun Wang, Beibei Ma, Zehua Xu, Yuan Wang","doi":"10.1007/s12666-024-03455-0","DOIUrl":null,"url":null,"abstract":"<p>This study designs new Fe-amorphous/Al-12Si piston composite materials. The effect and synergistic mechanism of the addition of Fe-amorphous and bionic microtexture laser surface on the high-temperature friction performance of Al-12Si piston material under mixed lubrication conditions of B30 biodiesel and engine lubricating oil have been studied. The results indicate that the frictional properties of the untextured surface of the Fe-amorphous/Al-12Si composite material depend primarily on the amount of Fe-amorphous added. The 10 wt% Fe-amorphous/Al-12Si composite exhibits a dense, void-free microstructure with optimum anti-friction and anti-wear performance. It is noteworthy that the interaction between the “anchoring” effect caused by the Fe-amorphous addition and the synergistic effect of the bionic microtexture providing a stable lubricating environment further enhances the high-temperature friction properties of Al-12Si.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"24 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03455-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

This study designs new Fe-amorphous/Al-12Si piston composite materials. The effect and synergistic mechanism of the addition of Fe-amorphous and bionic microtexture laser surface on the high-temperature friction performance of Al-12Si piston material under mixed lubrication conditions of B30 biodiesel and engine lubricating oil have been studied. The results indicate that the frictional properties of the untextured surface of the Fe-amorphous/Al-12Si composite material depend primarily on the amount of Fe-amorphous added. The 10 wt% Fe-amorphous/Al-12Si composite exhibits a dense, void-free microstructure with optimum anti-friction and anti-wear performance. It is noteworthy that the interaction between the “anchoring” effect caused by the Fe-amorphous addition and the synergistic effect of the bionic microtexture providing a stable lubricating environment further enhances the high-temperature friction properties of Al-12Si.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁-非晶和仿生微观纹理在增强 Al-12Si 活塞材料高温摩擦学性能方面的协同效应
本研究设计了新型 Fe-amorphous/Al-12Si 活塞复合材料。研究了在 B30 生物柴油和发动机润滑油混合润滑条件下,添加 Fe-amorphous 和仿生微纹理激光表面对 Al-12Si 活塞材料高温摩擦性能的影响和协同机制。结果表明,非晶/Al-12Si 复合材料无纹理表面的摩擦性能主要取决于非晶的添加量。10 wt% 的 Fe-amorphous/Al-12Si 复合材料呈现出致密、无空隙的微观结构,具有最佳的抗摩擦和抗磨损性能。值得注意的是,添加非晶态铁所产生的 "锚定 "效应与提供稳定润滑环境的仿生微观纹理的协同效应之间的相互作用进一步增强了 Al-12Si 的高温摩擦性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transactions of The Indian Institute of Metals
Transactions of The Indian Institute of Metals Materials Science-Metals and Alloys
CiteScore
2.60
自引率
6.20%
发文量
3
期刊介绍: Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering. Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.
期刊最新文献
Effect of Impact Energy on the Interface Microstructure of Explosively Clad Mild Steel and Titanium Surface Characteristics of Low Plasticity Burnished Laser Directed Energy Deposition Alloy IN718 Enhancement of Elastic Modulus by TiC Reinforcement in Low-Density Steel Microstructure Evolution and Mechanical Properties of NiAl-TiB2 Nanocomposite Produced by Heat Treatment Post Mechanical Alloying Effect of Boron and its Influence on Mechanically Alloyed FeCo Nanocrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1