{"title":"Photodegradable glyco-microfibers fabricated by the self-assembly of cellobiose derivatives bearing nitrobenzyl groups","authors":"Bioru Okumura, Eriko Yamaguchi, Naoko Komura, Taku Ohtomi, Shin-ichiro Kawano, Hiroyasu Sato, Hiroshi Katagiri, Hiromune Ando, Masato Ikeda","doi":"10.1038/s43246-024-00622-0","DOIUrl":null,"url":null,"abstract":"Stimuli-responsive materials constructed via the self-assembly of small biomolecules are attracting increasing attention because of their biocompatibility, sustainability, and variety of (bio)applications. Nevertheless, the research on oligosaccharide-based molecular designs for such stimuli-responsive materials (or stimuli-responsive glyco-materials) is limited, partly due to the intrinsic structural diversity of oligosaccharides and the difficulty associated with their selective chemical syntheses. Herein, we report the construction of photodegradable glyco-microfibers by the self-assembly of cellobiose derivatives bearing nitrobenzyl groups. The atomic-scale, self-assembled architecture of the photodegradable glyco-microfibers is unveiled and compared with those of pristine cellobiose and cellulose polymorphs in previous reports. Stimuli-responsive oligosaccharide-based molecular designs are limited due to their intrinsic structural diversity and difficulties in selective synthesis. Here, photodegradable glyco-microfibers are synthesized by the selfassembly of cellobiose derivatives bearing nitrobenzyl groups.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-10"},"PeriodicalIF":7.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00622-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00622-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stimuli-responsive materials constructed via the self-assembly of small biomolecules are attracting increasing attention because of their biocompatibility, sustainability, and variety of (bio)applications. Nevertheless, the research on oligosaccharide-based molecular designs for such stimuli-responsive materials (or stimuli-responsive glyco-materials) is limited, partly due to the intrinsic structural diversity of oligosaccharides and the difficulty associated with their selective chemical syntheses. Herein, we report the construction of photodegradable glyco-microfibers by the self-assembly of cellobiose derivatives bearing nitrobenzyl groups. The atomic-scale, self-assembled architecture of the photodegradable glyco-microfibers is unveiled and compared with those of pristine cellobiose and cellulose polymorphs in previous reports. Stimuli-responsive oligosaccharide-based molecular designs are limited due to their intrinsic structural diversity and difficulties in selective synthesis. Here, photodegradable glyco-microfibers are synthesized by the selfassembly of cellobiose derivatives bearing nitrobenzyl groups.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.