Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023

IF 2.7 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Journal of Arid Land Pub Date : 2024-08-27 DOI:10.1007/s40333-024-0082-3
Yujie Yan, Yiben Cheng, Zhiming Xin, Junyu Zhou, Mengyao Zhou, Xiaoyu Wang
{"title":"Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023","authors":"Yujie Yan, Yiben Cheng, Zhiming Xin, Junyu Zhou, Mengyao Zhou, Xiaoyu Wang","doi":"10.1007/s40333-024-0082-3","DOIUrl":null,"url":null,"abstract":"<p>The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world. Under the impacts of climate change and human activities, desertification is becoming increasingly severe on the Mongolian Plateau. Understanding the vegetation dynamics in this region can better characterize its ecological changes. In this study, based on Moderate Resolution Imaging Spectroradiometer (MODIS) images, we calculated the kernel normalized difference vegetation index (kNDVI) on the Mongolian Plateau from 2000 to 2023, and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test. We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis, and quantified the effects of climate change and human activities on kNDVI change by residual analysis. The results showed that kNDVI on the Mongolian Plateau was increasing overall, and the vegetation recovery area in the southern region was significantly larger than that in the northern region. About 50.99% of the plateau showed dominant climate-driven effects of temperature, precipitation, and wind speed on kNDVI change. Residual analysis showed that climate change and human activities together contributed to 94.79% of the areas with vegetation improvement. Appropriate human activities promoted the recovery of local vegetation, and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau. This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"7 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0082-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world. Under the impacts of climate change and human activities, desertification is becoming increasingly severe on the Mongolian Plateau. Understanding the vegetation dynamics in this region can better characterize its ecological changes. In this study, based on Moderate Resolution Imaging Spectroradiometer (MODIS) images, we calculated the kernel normalized difference vegetation index (kNDVI) on the Mongolian Plateau from 2000 to 2023, and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test. We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis, and quantified the effects of climate change and human activities on kNDVI change by residual analysis. The results showed that kNDVI on the Mongolian Plateau was increasing overall, and the vegetation recovery area in the southern region was significantly larger than that in the northern region. About 50.99% of the plateau showed dominant climate-driven effects of temperature, precipitation, and wind speed on kNDVI change. Residual analysis showed that climate change and human activities together contributed to 94.79% of the areas with vegetation improvement. Appropriate human activities promoted the recovery of local vegetation, and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau. This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2000 至 2023 年气候变化和人类活动对东亚蒙古高原植被动态的影响
东亚的蒙古高原是世界上最大的或有干旱和半干旱地区之一。在气候变化和人类活动的影响下,蒙古高原的荒漠化日益严重。了解该地区的植被动态可以更好地描述其生态变化特征。本研究基于中分辨率成像光谱仪(MODIS)图像,计算了蒙古高原2000-2023年的核归一化差异植被指数(kNDVI),并利用Theil-Sen中值趋势分析和Mann-Kendall显著性检验分析了kNDVI的变化。利用偏相关分析和复合相关分析进一步研究了气候变化对kNDVI变化的影响,并通过残差分析量化了气候变化和人类活动对kNDVI变化的影响。结果表明,蒙古高原的 kNDVI 总体呈上升趋势,南部地区的植被恢复面积明显大于北部地区。约 50.99% 的高原地区显示出温度、降水和风速对 kNDVI 变化的主导气候效应。残差分析表明,在气候变化和人类活动的共同作用下,94.79%的区域植被得到改善。适当的人类活动促进了当地植被的恢复,而气候变化则抑制了蒙古高原北部植被的生长。该研究为了解蒙古高原区域生态环境现状及未来变化、制定有效的生态保护措施提供了科学数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Arid Land
Journal of Arid Land ENVIRONMENTAL SCIENCES-
CiteScore
4.70
自引率
6.70%
发文量
768
审稿时长
3.2 months
期刊介绍: The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large. The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.
期刊最新文献
Predicting changes in the suitable habitats of six halophytic plant species in the arid areas of Northwest China Spatiotemporal landscape pattern changes and their effects on land surface temperature in greenbelt with semi-arid climate: A case study of the Erbil City, Iraq Impact of climate and human activity on NDVI of various vegetation types in the Three-River Source Region, China Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change Threshold friction velocity influenced by soil particle size within the Columbia Plateau, northwestern United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1