{"title":"Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023","authors":"Yujie Yan, Yiben Cheng, Zhiming Xin, Junyu Zhou, Mengyao Zhou, Xiaoyu Wang","doi":"10.1007/s40333-024-0082-3","DOIUrl":null,"url":null,"abstract":"<p>The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world. Under the impacts of climate change and human activities, desertification is becoming increasingly severe on the Mongolian Plateau. Understanding the vegetation dynamics in this region can better characterize its ecological changes. In this study, based on Moderate Resolution Imaging Spectroradiometer (MODIS) images, we calculated the kernel normalized difference vegetation index (kNDVI) on the Mongolian Plateau from 2000 to 2023, and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test. We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis, and quantified the effects of climate change and human activities on kNDVI change by residual analysis. The results showed that kNDVI on the Mongolian Plateau was increasing overall, and the vegetation recovery area in the southern region was significantly larger than that in the northern region. About 50.99% of the plateau showed dominant climate-driven effects of temperature, precipitation, and wind speed on kNDVI change. Residual analysis showed that climate change and human activities together contributed to 94.79% of the areas with vegetation improvement. Appropriate human activities promoted the recovery of local vegetation, and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau. This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0082-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world. Under the impacts of climate change and human activities, desertification is becoming increasingly severe on the Mongolian Plateau. Understanding the vegetation dynamics in this region can better characterize its ecological changes. In this study, based on Moderate Resolution Imaging Spectroradiometer (MODIS) images, we calculated the kernel normalized difference vegetation index (kNDVI) on the Mongolian Plateau from 2000 to 2023, and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test. We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis, and quantified the effects of climate change and human activities on kNDVI change by residual analysis. The results showed that kNDVI on the Mongolian Plateau was increasing overall, and the vegetation recovery area in the southern region was significantly larger than that in the northern region. About 50.99% of the plateau showed dominant climate-driven effects of temperature, precipitation, and wind speed on kNDVI change. Residual analysis showed that climate change and human activities together contributed to 94.79% of the areas with vegetation improvement. Appropriate human activities promoted the recovery of local vegetation, and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau. This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau.
期刊介绍:
The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large.
The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.