Multi-Scale X-Ray Imaging Technologies for Rechargeable Batteries

IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Chinese Physics Letters Pub Date : 2024-08-01 DOI:10.1088/0256-307x/41/8/088201
Zihan Xu, Hanwen An, Jiajun Wang
{"title":"Multi-Scale X-Ray Imaging Technologies for Rechargeable Batteries","authors":"Zihan Xu, Hanwen An, Jiajun Wang","doi":"10.1088/0256-307x/41/8/088201","DOIUrl":null,"url":null,"abstract":"The rapid advancement in electric vehicles and electrochemical energy storage technology has raised the demands placed on rechargeable batteries. It is essential to comprehend the operational principles and degradation mechanisms of batteries across multiple scales to propel the research on rechargeable batteries for the next generation forward. Microstructure, phase information, and lattice of energy materials in both two dimensions and three dimensions can be intuitively obtained through the utilization of x-ray imaging techniques. Additionally, x-ray imaging technology is increasingly gaining attention due to its non-destructive nature and high penetrative capability, enabling <italic toggle=\"yes\">in situ</italic> experiments and multi-scale spatial resolution. In this review, we initially overview the basic principles and characteristics of several key x-ray imaging technologies. Each x-ray imaging technology is tailored to specific application scenarios. Furthermore, examples of multi-scale implementations of x-ray imaging technologies in the field of rechargeable batteries are discussed. This review is anticipated to augment the comprehension of readers for x-ray imaging techniques as well as to stimulate the development of novel concepts and approaches in rechargeable battery research.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"18 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/8/088201","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement in electric vehicles and electrochemical energy storage technology has raised the demands placed on rechargeable batteries. It is essential to comprehend the operational principles and degradation mechanisms of batteries across multiple scales to propel the research on rechargeable batteries for the next generation forward. Microstructure, phase information, and lattice of energy materials in both two dimensions and three dimensions can be intuitively obtained through the utilization of x-ray imaging techniques. Additionally, x-ray imaging technology is increasingly gaining attention due to its non-destructive nature and high penetrative capability, enabling in situ experiments and multi-scale spatial resolution. In this review, we initially overview the basic principles and characteristics of several key x-ray imaging technologies. Each x-ray imaging technology is tailored to specific application scenarios. Furthermore, examples of multi-scale implementations of x-ray imaging technologies in the field of rechargeable batteries are discussed. This review is anticipated to augment the comprehension of readers for x-ray imaging techniques as well as to stimulate the development of novel concepts and approaches in rechargeable battery research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可充电电池的多尺度 X 射线成像技术
电动汽车和电化学储能技术的快速发展提高了对充电电池的要求。了解电池在多个尺度上的工作原理和降解机制对于推动下一代充电电池的研究至关重要。通过利用 X 射线成像技术,可以直观地获得能源材料在二维和三维空间的微观结构、相信息和晶格。此外,X 射线成像技术由于其非破坏性和高穿透能力,可实现原位实验和多尺度空间分辨率,正日益受到人们的关注。在本综述中,我们首先概述了几种关键 X 射线成像技术的基本原理和特点。每种 X 射线成像技术都是针对特定应用场景量身定制的。此外,还讨论了 X 射线成像技术在充电电池领域的多尺度应用实例。预计本综述将增强读者对 X 射线成像技术的理解,并促进充电电池研究领域新概念和新方法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Physics Letters
Chinese Physics Letters 物理-物理:综合
CiteScore
5.90
自引率
8.60%
发文量
13238
审稿时长
4 months
期刊介绍: Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.
期刊最新文献
Dual MAPK Inhibition Triggers Pro-inflammatory Signals and Sensitizes BRAF V600E Glioma to T Cell-Mediated Checkpoint Therapy. Simulating a Chern Insulator with C = ±2 on Synthetic Floquet Lattice Rydberg-Induced Topological Solitons in Three-Dimensional Rotation Spin–Orbit-Coupled Bose–Einstein Condensates Multiple Soliton Asymptotics in a Spin-1 Bose–Einstein Condensate Pc(4457) Interpreted as a JP = 1/2+ State by D¯0Λc+(2595) – π0Pc(4312)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1