{"title":"Integration of down-flow hanging sponge reactor to oreochromis niloticus - Brassica oleracea aquaponics system.","authors":"Wilasinee Kotcharoen,Zen Nagai,Takahiro Watari,Nur Adlin,Masashi Hatamoto,Yuki Murakami,Namita Maharjan,Yutaka Takeuchi,Shinichi Yamazaki,Takashi Yamaguchi","doi":"10.1080/10934529.2024.2399444","DOIUrl":null,"url":null,"abstract":"Aquaponics is a promising solution for addressing food security concerns. Nonetheless, an effective water-purification system is necessary to achieve high and stable yields of fish and vegetables. This study aimed to evaluate the nitrification and oxygen transfer performance of a laboratory-scale down-flow hanging sponge (DHS) reactor with a Brassica oleracea aquaponics system to treat water in an Oreochromis niloticus closed-aquaculture system. The DHS reactor showed a higher oxygen transfer coefficient (KLa) than the conventional aerator and provided an adequate dissolved oxygen (DO) concentration of approximately 5.5 mg/L essential for O. niloticus growth throughout the experimental period. The evaluated DHS-based aquaponic system maintained high water quality in an aquaculture tank, with a survival rate of 97%. The O. niloticusgrew at a low feed conversion ratio of 1.5-2.1 and a low feeding rate of 0.5% at high stocking densities of 17.5-22.2 kg-fish-weight/m3. 16S rRNA gene sequencing indicated that the DHS sponge carrier effectively retained nitrifying bacteria such as Nitrosomonas and Nitrospira. This study demonstrated that the DHS reactor provided a high DO concentration and that a simultaneous DHS reactor with a hydroponic tank provided a low-cost aquaponic system that could be applied for food production in the aquaculture industry.","PeriodicalId":15733,"journal":{"name":"Journal of Environmental Science and Health, Part A","volume":"57 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health, Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10934529.2024.2399444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aquaponics is a promising solution for addressing food security concerns. Nonetheless, an effective water-purification system is necessary to achieve high and stable yields of fish and vegetables. This study aimed to evaluate the nitrification and oxygen transfer performance of a laboratory-scale down-flow hanging sponge (DHS) reactor with a Brassica oleracea aquaponics system to treat water in an Oreochromis niloticus closed-aquaculture system. The DHS reactor showed a higher oxygen transfer coefficient (KLa) than the conventional aerator and provided an adequate dissolved oxygen (DO) concentration of approximately 5.5 mg/L essential for O. niloticus growth throughout the experimental period. The evaluated DHS-based aquaponic system maintained high water quality in an aquaculture tank, with a survival rate of 97%. The O. niloticusgrew at a low feed conversion ratio of 1.5-2.1 and a low feeding rate of 0.5% at high stocking densities of 17.5-22.2 kg-fish-weight/m3. 16S rRNA gene sequencing indicated that the DHS sponge carrier effectively retained nitrifying bacteria such as Nitrosomonas and Nitrospira. This study demonstrated that the DHS reactor provided a high DO concentration and that a simultaneous DHS reactor with a hydroponic tank provided a low-cost aquaponic system that could be applied for food production in the aquaculture industry.