Boltzmann approach to collective motion via non-local visual interaction

Susumu Ito, Nariya Uchida
{"title":"Boltzmann approach to collective motion via non-local visual interaction","authors":"Susumu Ito, Nariya Uchida","doi":"arxiv-2408.09917","DOIUrl":null,"url":null,"abstract":"Visual cues play crucial roles in the collective motion of animals, birds,\nfish, and insects. The interaction mediated by visual information is\nessentially non-local and has many-body nature due to occlusion, which poses a\nchallenging problem in modeling the emergent collective behavior. In this\nLetter, we introduce a Boltzmann-equation approach incorporating non-local\nvisual interaction. Occlusion is treated in a self-consistent manner via a\ncoarse-grained density field, which renders the interaction effectively\npairwise. Our model also incorporates the recent finding that each organism\nstochastically selects a neighbor to interact at each instant. We analytically\nderive the order-disorder transition point, and show that the visual screening\neffect substantially raises the transition threshold, which does not vanish\nwhen the density of the agents or the range of the intrinsic interaction is\ntaken to infinity. Our analysis suggests that the model exhibits a\ndiscontinuous transition as in the local interaction models, and but the\ndiscontinuity is weakened by the non-locality. Our study clarifies the\nessential role of non-locality in the visual interactions among moving\norganisms.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual cues play crucial roles in the collective motion of animals, birds, fish, and insects. The interaction mediated by visual information is essentially non-local and has many-body nature due to occlusion, which poses a challenging problem in modeling the emergent collective behavior. In this Letter, we introduce a Boltzmann-equation approach incorporating non-local visual interaction. Occlusion is treated in a self-consistent manner via a coarse-grained density field, which renders the interaction effectively pairwise. Our model also incorporates the recent finding that each organism stochastically selects a neighbor to interact at each instant. We analytically derive the order-disorder transition point, and show that the visual screening effect substantially raises the transition threshold, which does not vanish when the density of the agents or the range of the intrinsic interaction is taken to infinity. Our analysis suggests that the model exhibits a discontinuous transition as in the local interaction models, and but the discontinuity is weakened by the non-locality. Our study clarifies the essential role of non-locality in the visual interactions among moving organisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过非局部视觉互动实现集体运动的波尔兹曼方法
视觉线索在动物、鸟类、鱼类和昆虫的集体运动中起着至关重要的作用。由视觉信息介导的交互作用本质上是非局部的,并且由于遮挡而具有多体性,这给新兴集体行为的建模带来了挑战性问题。在这封信中,我们介绍了一种包含非局部视觉交互的玻尔兹曼方程方法。通过粗粒度密度场以自洽的方式处理遮挡问题,从而有效地对交互作用进行对等处理。我们的模型还结合了最近的发现,即每个生物在每个瞬间都会随机选择一个邻居进行互动。我们通过分析得出了有序-无序转换点,并表明视觉屏蔽效应大大提高了转换阈值,当生物体的密度或内在相互作用的范围达到无穷大时,转换阈值也不会消失。我们的分析表明,该模型与局部相互作用模型一样表现出不连续的过渡,但非局部性削弱了这种不连续。我们的研究阐明了非局部性在运动有机体间视觉相互作用中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expected and unexpected routes to synchronization in a system of swarmalators Synchronization cluster bursting in adaptive oscillators networks The forced one-dimensional swarmalator model Periodic systems have new classes of synchronization stability Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1