{"title":"Synergistic toughening effects of elastomer toughener and nucleating agent on mechanical properties and crystallization behaviors of polypropylene","authors":"Ziwen Yin, Deyu Wei, Qing Lin, Hanlin Tian, Jinshuo Yu, Yanbo Li, Huiwen Deng, Zepeng Wang, Hongwei Pan, Yan Zhao, Huiliang Zhang","doi":"10.1002/pat.6578","DOIUrl":null,"url":null,"abstract":"A novel thermoplastic elastomer, kernel resin (KN), α‐nucleating agent (HPN), and β‐nucleating agent (DCHT), which acted as toughener and nucleating agents (NAs), were used to improve the mechanical properties and crystallization behaviors of isotactic polypropylene (PP). The impact strength of the PP/KN blends increased significantly with increase in KN concentration. Surprisingly, the impact strength of PP/KN/NA blends improved further upon addition of NA. The toughening effect of DCHT was stronger than that of HPN. The maximum impact strength of PP/KN/DCHT blend reached 69.2 kJ/m<jats:sup>2</jats:sup> when the DCHT content was 0.05%, which was six times higher than that of neat PP. The SEM images of fractured surfaces of the blends showed a change from brittle fracture to ductile fracture. Moreover, the WAXD results showed that the incorporation of HPN promoted the formation of the α form of crystalline PP. Addition of DCHT induced the generation of α‐β crystal transition of PP. Furthermore, differential scanning calorimetry showed that the crystallizability and the overall crystallization rate of PP were enhanced by the addition of KN and NA. The half‐crystallization time of PP at 128°C decreased from 5.52 (neat PP) to 0.34 min (PP/KN/DCHT‐0.3).","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"12 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6578","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A novel thermoplastic elastomer, kernel resin (KN), α‐nucleating agent (HPN), and β‐nucleating agent (DCHT), which acted as toughener and nucleating agents (NAs), were used to improve the mechanical properties and crystallization behaviors of isotactic polypropylene (PP). The impact strength of the PP/KN blends increased significantly with increase in KN concentration. Surprisingly, the impact strength of PP/KN/NA blends improved further upon addition of NA. The toughening effect of DCHT was stronger than that of HPN. The maximum impact strength of PP/KN/DCHT blend reached 69.2 kJ/m2 when the DCHT content was 0.05%, which was six times higher than that of neat PP. The SEM images of fractured surfaces of the blends showed a change from brittle fracture to ductile fracture. Moreover, the WAXD results showed that the incorporation of HPN promoted the formation of the α form of crystalline PP. Addition of DCHT induced the generation of α‐β crystal transition of PP. Furthermore, differential scanning calorimetry showed that the crystallizability and the overall crystallization rate of PP were enhanced by the addition of KN and NA. The half‐crystallization time of PP at 128°C decreased from 5.52 (neat PP) to 0.34 min (PP/KN/DCHT‐0.3).
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.