Claudia I. Valdés‐Lozano, Jesús A. Claudio‐Rizo, Denis A. Cabrera‐Munguía, Maria I. León‐Campos, Juan J. Mendoza‐Villafaña, Juan J. Becerra‐Rodriguez
{"title":"Modulation of animal and plant tissue growth with collagen‐starch‐organic molybdenum networks hydrogel biomatrices","authors":"Claudia I. Valdés‐Lozano, Jesús A. Claudio‐Rizo, Denis A. Cabrera‐Munguía, Maria I. León‐Campos, Juan J. Mendoza‐Villafaña, Juan J. Becerra‐Rodriguez","doi":"10.1002/pat.6568","DOIUrl":null,"url":null,"abstract":"The development of hydrogel biomatrices with potential to modulate animal and plant tissue growth is ongoing. In this study, molybdenum bio‐metal–organic frameworks (MOFs) (Mo‐bioMOFs) incorporating essential amino acids such as <jats:sc>l</jats:sc>‐histidine (Mo‐His), <jats:sc>l</jats:sc>‐phenylalanine (Mo‐Phe), and <jats:sc>l</jats:sc>‐tryptophan (Mo‐Trp) were encapsulated in semi‐interpenetrating polymer network (semi‐IPN) hydrogels composed of collagen and starch. The structure and properties of these materials show dependence on the amino acid that constitutes the Mo‐bioMOFs. The biomatrices have a semi‐crystalline surface with increased porosity when using Mo‐His; this system also benefits swelling. Increased crosslinking, acceleration in gelation, and mechanical improvement are observed for the system based on Mo‐Phe. Methylene blue release experiments were conducted, demonstrating that matrices including Mo‐bioMOFs exhibit controlled release profiles, indicating highly stable retention of Mo‐bioMOFs in the semi‐IPN matrix. The biomatrices enhance the metabolism and proliferation of fibroblasts and monocytes, with Mo‐Trp reducing the secretion of inflammatory cytokines like TNF‐α. The biomatrices exhibit gradual and slow mass loss when exposed to collagenase and commercial vegetable substrates. Both leaf and root cells of tomato plants (<jats:italic>Solanum lycopersicum</jats:italic>) show increased metabolism and growth when exposed to Mo‐Phe and Mo‐His. Notably, the biomatrix containing Mo‐Phe promotes the most substantial plant growth and foliage after 30 days. These biomatrices have potential applications in chronic wound healing and agriculture.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"51 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6568","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The development of hydrogel biomatrices with potential to modulate animal and plant tissue growth is ongoing. In this study, molybdenum bio‐metal–organic frameworks (MOFs) (Mo‐bioMOFs) incorporating essential amino acids such as l‐histidine (Mo‐His), l‐phenylalanine (Mo‐Phe), and l‐tryptophan (Mo‐Trp) were encapsulated in semi‐interpenetrating polymer network (semi‐IPN) hydrogels composed of collagen and starch. The structure and properties of these materials show dependence on the amino acid that constitutes the Mo‐bioMOFs. The biomatrices have a semi‐crystalline surface with increased porosity when using Mo‐His; this system also benefits swelling. Increased crosslinking, acceleration in gelation, and mechanical improvement are observed for the system based on Mo‐Phe. Methylene blue release experiments were conducted, demonstrating that matrices including Mo‐bioMOFs exhibit controlled release profiles, indicating highly stable retention of Mo‐bioMOFs in the semi‐IPN matrix. The biomatrices enhance the metabolism and proliferation of fibroblasts and monocytes, with Mo‐Trp reducing the secretion of inflammatory cytokines like TNF‐α. The biomatrices exhibit gradual and slow mass loss when exposed to collagenase and commercial vegetable substrates. Both leaf and root cells of tomato plants (Solanum lycopersicum) show increased metabolism and growth when exposed to Mo‐Phe and Mo‐His. Notably, the biomatrix containing Mo‐Phe promotes the most substantial plant growth and foliage after 30 days. These biomatrices have potential applications in chronic wound healing and agriculture.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.