{"title":"Synthesis of azabenzotriazole‐terminated liquid crystal poly(ester imide)s for improving their adhesion to copper foils","authors":"Xiangyi Li, Yuanqin Guo, Shumei Liu, Jianqing Zhao","doi":"10.1002/pat.6555","DOIUrl":null,"url":null,"abstract":"Liquid crystal polymers (LCPs) should be widely used as substrates in flexible copper clad laminate (FCCL) owing to their unique advantages. However, the poor adhesion of LCPs to copper foils hinders their applications. Considering the good adhesion between polyimides and copper foils, imide groups have previously been introduced into the main chains of LCP molecules. In the present paper, to further enhance the adhesion of the LCPEIs, the 1‐hydroxy‐7‐azabenzotriazole (HOAt) is used to terminate the main chains of LCPEI molecules, which arises from the excellent coordination interaction between the azabenzotriazole groups and copper ions. Thus, the liquid crystal poly(ester imide) (t‐LCPEI), carboxyl‐terminated liquid crystal poly(ester imide) (c‐LCPEI), and azabenzotriazole‐terminated liquid crystal poly(ester imide) (a‐LCPEI) were synthesized. The results showed that LCPEIs possessed liquid crystallinity, and the peel strength of a‐LCPEI film to copper foils was increased by about 140% and nearly 43%, respectively, compared to that of LCP and t‐LCPEI. Moreover, a‐LCPEI showed higher glass transition temperature (<jats:italic>T</jats:italic><jats:sub><jats:italic>g</jats:italic></jats:sub> = 211°C) than conventional LCP resins (<jats:italic>T</jats:italic><jats:sub><jats:italic>g</jats:italic></jats:sub> = 155°C, Vectra A), and excellent thermal properties. Meanwhile, the dielectric constant and loss of a‐LCPEI were as low as 3.04 and 9.7 × 10<jats:sup>−3</jats:sup> at 10 GHz, respectively. These findings indicate that the azabenzotriazole‐terminated LCPEI is suitable to be used as the substrate material for high‐performance FCCL, and the work provides a feasible approach to enhance the adhesion and maintain the other outstanding properties of LCP.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6555","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid crystal polymers (LCPs) should be widely used as substrates in flexible copper clad laminate (FCCL) owing to their unique advantages. However, the poor adhesion of LCPs to copper foils hinders their applications. Considering the good adhesion between polyimides and copper foils, imide groups have previously been introduced into the main chains of LCP molecules. In the present paper, to further enhance the adhesion of the LCPEIs, the 1‐hydroxy‐7‐azabenzotriazole (HOAt) is used to terminate the main chains of LCPEI molecules, which arises from the excellent coordination interaction between the azabenzotriazole groups and copper ions. Thus, the liquid crystal poly(ester imide) (t‐LCPEI), carboxyl‐terminated liquid crystal poly(ester imide) (c‐LCPEI), and azabenzotriazole‐terminated liquid crystal poly(ester imide) (a‐LCPEI) were synthesized. The results showed that LCPEIs possessed liquid crystallinity, and the peel strength of a‐LCPEI film to copper foils was increased by about 140% and nearly 43%, respectively, compared to that of LCP and t‐LCPEI. Moreover, a‐LCPEI showed higher glass transition temperature (Tg = 211°C) than conventional LCP resins (Tg = 155°C, Vectra A), and excellent thermal properties. Meanwhile, the dielectric constant and loss of a‐LCPEI were as low as 3.04 and 9.7 × 10−3 at 10 GHz, respectively. These findings indicate that the azabenzotriazole‐terminated LCPEI is suitable to be used as the substrate material for high‐performance FCCL, and the work provides a feasible approach to enhance the adhesion and maintain the other outstanding properties of LCP.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.